The MBR7.. Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T_J operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Major Ratings and Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F(AV)}$ Rectangular waveform</td>
<td>7.5</td>
<td>A</td>
</tr>
<tr>
<td>V_{RRM} range</td>
<td>35 - 45</td>
<td>V</td>
</tr>
<tr>
<td>I_{FSM} @ $t = 5 \mu s$ sine</td>
<td>690</td>
<td>A</td>
</tr>
<tr>
<td>V_F @ 16 Apk, $T_J = 125^\circ C$</td>
<td>0.57</td>
<td>V</td>
</tr>
<tr>
<td>T_J range</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Casestyles

- **MBR7..**
 - TO-220AC
- **MBRB7..**
 - D²PAK

Description/Features

- 7.5 Amp
- $I_{F(AV)} = 7.5$Amp
- $V_R = 35 - 45$V
Voltage Ratings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MBR.735</th>
<th>MBR.745</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DR} Max. DC Reverse Voltage (V)</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>V_{RWM} Max. Working Peak Reverse Voltage (V)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MBR.735</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{FAM} Max. Average Forward Current</td>
<td>7.5</td>
<td>A</td>
<td>@ $T_c = 131 \degree C$ (Rated V_{RR})</td>
</tr>
<tr>
<td>I_{FSM} Non-Repetitive Peak Surge Current</td>
<td>690</td>
<td>A</td>
<td>5μs Sine or 3μs Rect. pulse V_{RMM} applied</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Surge applied at rated load condition halfwave single phase 60Hz</td>
</tr>
<tr>
<td>E_{AS} Non-Repetitive Avalanche Energy</td>
<td>7</td>
<td>mJ</td>
<td>$T_J = 25 \degree C$, $I_{AS} = 2$ Amps, $L = 3.5$ mH</td>
</tr>
<tr>
<td>I_{AR} Repetitive Avalanche Current</td>
<td>2</td>
<td>A</td>
<td>Current decaying linearly to zero in 1 μsec Frequency limited by $T_{j,max} V_A = 1.5 x V_{R}$ typical</td>
</tr>
</tbody>
</table>

Electrical Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MBR.735</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FM} Max. Forward Voltage Drop</td>
<td>0.84</td>
<td>V</td>
<td>@ 15A $T_J = 25 \degree C$</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>V</td>
<td>@ 7.5A $T_J = 125 \degree C$</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>V</td>
<td>@ 15A</td>
</tr>
<tr>
<td>I_{IRM} Max. Instantaneous Reverse Current</td>
<td>0.1</td>
<td>mA</td>
<td>$T_J = 25 \degree C$ Rated DC voltage</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>mA</td>
<td>$T_J = 125 \degree C$</td>
</tr>
<tr>
<td>C_J Max. Junction Capacitance</td>
<td>400</td>
<td>pF</td>
<td>$V_{R} = 5 V_{RDC}$ (test signal range 100Khz to 1MHz) 25°C</td>
</tr>
<tr>
<td>L_S Typical Series Inductance</td>
<td>8.0</td>
<td>nH</td>
<td>Measured from top of terminal to mounting plane</td>
</tr>
<tr>
<td>dv/dt Max. Voltage Rate of Change (Rated V_{R})</td>
<td>1000</td>
<td>V/μs</td>
<td></td>
</tr>
</tbody>
</table>

(1) Pulse Width < 300μs, Duty Cycle <2%

Thermal-Mechanical Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MBR.735</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J Max. Junction Temperature Range</td>
<td>-65 to 150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{stg} Max. Storage Temperature Range</td>
<td>-65 to 175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>R_{JUC} Max. Thermal Resistance Junction to Case</td>
<td>3.0</td>
<td>°C/W</td>
<td>DC operation</td>
</tr>
<tr>
<td>R_{JCS} Typical Thermal Resistance, Case to HeatSink</td>
<td>0.5</td>
<td>°C/W</td>
<td>Mounting surface, smooth and greased</td>
</tr>
<tr>
<td>w Approximate Weight</td>
<td>2 (0.07)</td>
<td>g (oz.)</td>
<td></td>
</tr>
<tr>
<td>T Mounting Torque</td>
<td>6 (5)</td>
<td>Kg-cm (lbf-in)</td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td>12 (10)</td>
<td>Kg-cm (lbf-in)</td>
<td>Max.</td>
</tr>
<tr>
<td>Marking Device</td>
<td>MBR745</td>
<td>Case Style TO-220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBR8745</td>
<td>Case Style D²Pak</td>
<td></td>
</tr>
</tbody>
</table>

www.irf.com
Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

(2) Formula used:

\[T_C = T_J - (P_d + P_{d,REV}) \times R_{th,JC} \]

\[P_d = \text{Forward Power Loss} = I_{AV} \times V_{FM} \times \left(\frac{I_{AV}}{D} \right) \text{ (see Fig. 6)} \]

\[P_{d,REV} = \text{Inverse Power Loss} = V_{RRM} \times I_R (1 - D) \text{; } I_R \text{ @ } V_{RRM} = \text{rated } V_R \]
Outline Table

Conform to JEDEC outline TO-220AC
Dimensions in millimeters and (inches)

Conform to JEDEC outline D²Pak (SMD-220)
Dimensions in millimeters and (inches)
Part Marking Information

TO-220AC

EXAMPLE: THIS IS A MBR745
LOT CODE 1789
ASSEMBLED ON WW 19, 2001
IN THE ASSEMBLY LINE "C"

INTERNATIONAL RECTIFIER
LOGO

PART NUMBER

DATE CODE
YEAR 1 = 2001
WEEK 19
LINE C

ASSEMBLY
LOT CODE

MBR745
17 89

RECTIFIER
EXAMPLE:

IN THE ASSEMBLY LINE "C"

ASSEMBLED ON WW 19, 2001
LOT CODE 1789

INTERNATIONAL RECTIFIER
LOGO

PART NUMBER

DATE CODE
YEAR 1 = 2001
WEEK 19
LINE C

ASSEMBLY
LOT CODE

MBR745
17 89

RECTIFIER

D^2Pak

EXAMPLE: THIS IS A MBR745
LOT CODE 8024
ASSEMBLED ON WW 02, 2000

INTERNATIONAL RECTIFIER
LOGO

PART NUMBER

DATE CODE
YEAR 0 = 2000
WEEK 02
LINE C

ASSEMBLY
LOT CODE

MBR745
17 89

RECTIFIER

Tape & Reel Information

Dimensions in millimeters and (inches)
Ordering Information Table

<table>
<thead>
<tr>
<th>Device Code</th>
<th>MBR</th>
<th>B</th>
<th>7</th>
<th>45</th>
<th>TRL</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Schottky MBR Series
2. Package Style:
 - none = TO-220
 - B = D²PAk
3. Current Rating (7.5A)
4. Voltage Ratings
 - none = Tube
 - TRR = Tape & Reel (Right Oriented)
 - TRL = Tape & Reel (Left Oriented)
5. - none = Standard Production
 - PbF = Lead-Free

Device Codes

- 35 = 35V
- 45 = 45V

www.irf.com
* This model has been developed by
* Wizard SPICE MODEL GENERATOR (1999)
* (International Rectifier Corporation)
* contains Proprietary Information
* SPICE Model Diode is composed by a
* simple diode plus paralleled VCG2T

.SUBCKT MBR745 ANO CAT
D1 ANO 1 DMOD (0.03191)
.MODEL DMOD D(IS=9.72464638473799E-05A,N=1.30648926537753,BV=52V,
+ IBV=0.195508065728349A,RS= 0.000727548,CJO=1.94829878431799E-08,
+ VJ=2.27282978121533,XTI=2, EG=0.854458710837653)

*Implementation of VCG2T
VX 1 2 DC 0V
R1 2 CAT TRES 1E-6
.MODEL TRES RES(R=1,TC1=27.6281424524011)
GP1 ANO CAT VALUE={-ABS(I(VX))*(EXP((((-5.219758E-03/27.62814)*((V(2,CAT)*1E6)/(I(VX)+1E-6)-
1))+1)*7.000165E-02*ABS(V(ANO,CAT))-1))

.ENDS MBR745

Thermal Model Subcircuit
.SUBCKT MBR745 5 1
CTERM1 5 4 1.05E+00
CTERM2 4 3 4.44E+00
CTERM3 3 2 1.16E+01
CTERM4 2 1 6.12E+01
RTERM1 5 4 1.33E+00
RTERM2 4 3 1.19E+00
RTERM3 3 2 3.81E-01
RTERM1 2 1 9.54E-02

.ENDS MBR745

Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 06/06