M3GB DC-DC converter series
120V input, radiation-hardened hybrid products

28V has long been a standard bus voltage in spacecraft power systems. Today’s spacecraft are more sophisticated in capabilities and functionality, demanding greater electrical power capacity to drive subsystems. As spacecraft power demands have increased to 15kW and beyond, the industry need for higher bus voltage and increased system efficiencies became clear. Higher spacecraft bus voltages are now common in the industry. For example, NASA’s Orion spacecraft, the International Space Station (ISS) and Space Launch System rocket all use a 120V bus, specifically with M3GB DC-DC converters.

Made in the USA, MIL-PRF-38534 Class K SMD compliant
IR HiRel’s M3GB series is the industry’s first family of high input voltage radiation-hardened (rad hard) DC-DC converters using hybrid technology capable of 120V nominal input voltage, up to 40W of output power, and with models qualified to MIL-PRF-38534 Class K with DLA Standard Microelectronics Drawing (SMD). With a wide DC input voltage range, from 95V to 140V, the M3GB offers the availability of proven, off-the-shelf, fully qualified and fully documented hybrid converters in a compact 3” x 2” x 0.475” package that weighs less than 100g.

Over 20 years of design heritage with thousands of units manufactured
The M3GB series with 120V nominal input voltage builds on the long heritage of the widely used M3GB family, with many available DLA SMD for the 28V nominal input voltage. Used in hundreds of programs, the family also benefits from IR HiRel’s integrated design, process and manufacturing know-how to deliver high-reliability hermetic hybrid products.

Fully de-rated, ready for use in a broad range of applications
The M3GB series is fully qualified for radiation environments up to 1.0E13 n/cm² neutron fluence, 300 kRads (Si) Total Ionizing Dose, and SEE-rated at 82 MeV-cm²/mg LET. This rugged DC-DC converter family is compliant to MIL-PRF-38534 Class K SMD and available with radiation hardness components tested in accordance with additional Radiation Lot Acceptance Testing (RLAT) per the DLA MIL-PRF-38534 approved Radiation Hardness Assurance (RHA) plan.
M3GB DC-DC converter series
120V input, radiation-hardened hybrid products

The M3GB series is supported by thorough design analyses, validated by test data, which are ready for use in next-level system or equipment-level analysis by customers. Our extensive de-rating and design analyses provide a high level of confidence to customers in product performance to datasheet specifications through end-of-life (15 years).

With two available models – 12V output and 15V dual output – the rugged M3GB DC-DC converter series is designed to support a wide range of applications. Other output voltage models with 120V nominal input voltages are available on demand or are in development.

Block diagram, single output
M3GB DC-DC converter series
120V input, radiation-hardened hybrid products

Radiation hardened by design
The M3GB DC-DC converter series uses a proven, conservative design methodology that includes:

- Selecting radiation tolerant and established reliability components
- Fully de-rating to MIL-STD-1547 and MIL-STD-975 requirements

Heavy de-rating of the rad hard MOSFET virtually eliminates the possibility of single-event gate rupture (SEGR) and single-event burnout (SEB). IR HiRel’s thorough design analyses include Radiation Susceptibility (TREE), Worst Case, Stress, Thermal, Failure Modes and Effects (FMEA), and Reliability (MTBF).

Radiation performance characteristics

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ionizing dose (Gamma)</td>
<td>MIL-STD-883, Method 1019 Operating bias applied during exposure, full rated load V<sub>n</sub> = 120V</td>
<td>200</td>
<td>300</td>
<td>kRads (Si)</td>
</tr>
<tr>
<td>Dose rate (Gamma dot)</td>
<td>MIL-STD-883, Method 1023 Operating bias applied during exposure, full rated load V<sub>n</sub> = 120V (supported by analysis)</td>
<td>1E8</td>
<td>1E11</td>
<td>Rads (Si)/sec</td>
</tr>
<tr>
<td>Neutron fluence</td>
<td>MIL-STD-883, Method 1017 (supported by analysis)</td>
<td>8E12</td>
<td>1E13</td>
<td>Neutrons/cm²</td>
</tr>
<tr>
<td>Single Event Effects</td>
<td>Heavy ions (LET) Operating bias applied during exposure, full rated load V<sub>n</sub> = 95, 120, 140V</td>
<td>82</td>
<td></td>
<td>MeV·cm²/mg</td>
</tr>
</tbody>
</table>
M3GB DC-DC converter series
120V input, radiation-hardened hybrid products

Product information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Output voltage single (V)</th>
<th>Output voltage dual (V)</th>
<th>DLA SMD drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3GB12003R3S</td>
<td>+3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3GB12005S</td>
<td>+5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3GB12012S</td>
<td>+12</td>
<td></td>
<td>5962-19202</td>
</tr>
<tr>
<td>M3GB12015S</td>
<td>+15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3GB12005D</td>
<td>+/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3GB12012D</td>
<td>+/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3GB12015D</td>
<td>+/15</td>
<td></td>
<td>5962-19203</td>
</tr>
</tbody>
</table>

A resource you can count on
IR HiRel is a trusted expert in high-reliability DC-DC converters, with a broad portfolio available in a variety of packages for space, aerospace and defense, and other demanding environments. Our rad tolerant and rad hard DC-DC solutions include:

› Ruggedized DC-DC converters
› Rad hard hermetic hybrid DC-DC converters, with DLA-certified MIL-PRF-38534 Class K SMD available for multiple models
› Rad hard PCB open frame and enclosed power supplies

Backed by IR HiRel's vast space heritage, you can reliably source qualified power supplies that reduce project risk and time to market. Our flight-proven DC-DC converters can be used with confidence in a wide range of applications.

www.infineon.com/irhirel

Published by
International Rectifier HiRel Products, Inc.
An Infineon Technologies Company
El Segundo, California 90245 USA
© 2021 Infineon Technologies AG.
All Rights Reserved.

Document number: B119-I1057-V2-7600-NA-EC-P
Date: 02/2021

Please note! This Document is for information purposes only and any information given herein shall in no event be regarded as a warranty, guarantee or description of any functionality, conditions and/or quality of our products or any suitability for a particular purpose. With regard to the technical specifications of our products, we kindly ask you to refer to the relevant product data sheets provided by us. Our customers and their technical departments are required to evaluate the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given herein at any time.

Additional information
For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings
Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest International Rectifier HiRel Products, Inc., an Infineon Technologies company, office.

International Rectifier HiRel components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.