PROBLEM ADVISORY

1. TITLE
Hybrid Package Ceramic Seal Design

2. DOCUMENT NUMBER
FV5-P-09-03

3. DATE (DD-MMM-YY)
23 JULY 2009

4. MANUFACTURER AND ADDRESS
International Rectifier, HiRel
2270 Martin Ave.
Santa Clara, CA 95050

5. PART NUMBER
FSC 5962

6. NATIONAL STOCK NUMBER
NOT AVAILABLE

7. SPECIFICATION
MIL-PRF-38534

8. TYPE DESIGNATOR
NOT AVAILABLE

9. LOT DATE CODE START
NOT APPLICABLE

10. LOT DATE CODE END
NOT APPLICABLE

11. MANUFACTURER’S POINT OF CONTACT
Granville C. Rains

12. CAGE
52467

13. MANUFACTURER’S FAX
NOT AVAILABLE

14. MFR. POC PHONE
(408) 450-5886

15. MANUFACTURER’S E-MAIL
grains1@irf.com

19. PROBLEM DESCRIPTION / DISCUSSION / EFFECT
International Rectifier is concerned about numerous reports from agencies and customers of widespread package leakage issues with DC to DC converters. This is not true; International Rectifier has recently detected hermetic seal failures with one of its hybrid product (M3G series). The scope of failure involves 4 package lots, and from which a total of 48 hybrid units were shipped to two customers. These customers have been notified of the problem and those hybrids were contained. All other units at IR were dispositioned as scrap. This problem advisory can serve to advance state-of-the-art designs with hybrid packages.

The seal failures detected were latent and influenced by environmental stresses such as temperature cycling and/or changes in atmospheric pressure. Failure analysis revealed cracks in the hybrid package ceramic seals, which resulted in the loss of hermetic seal, and failure to meet the seal requirements of MIL-STD-883, TM1014.

continued...

20. ACTION TAKEN/PLANNED
Following the discovery of the package nonconformance, International Rectifier has reviewed and contained all products affected by this nonconformance. Written notifications were issued to all customers in direct receipt of product affected, with recommendation for hybrid replacement.

Actions taken to prevent recurrence include:
1) Counter bore ceramic seal designs have been prohibited from IR hybrid package designs.
2) Counter sink ceramic seal designs on packages now specify the maximum depth of feature.

This Problem Advisory has been coordinated with DSCC-VQH prior to its release.

21. DATE MFR. NOTIFIED
NOT APPLICABLE

22. MANUFACTURER’S RESPONSE
NOT APPLICABLE

23. ORIGINATOR ADDRESS/POINT OF CONTACT
Granville C. Rains, International Rectifier, HiRel
(408) 450-5886
grains1@irf.com

24. GIDEP REPRESENTATIVE
Granville C. Rains

25. SIGNATURE

26. DATE
22 JULY 2009
Mechanical analysis of the hybrid package seal revealed that the side-wall compression force was not uniformly applied across the ceramic feed through. This variation in the mechanical load between the pin and frame causes a tensile force on the ceramic, leading to cracks. During temperature excursions, the compression force differential is further aggravated by the material CTE properties. Through empirical studies with cross sections and package leak data, it was determined that the tensile force on the ceramic acted in proportion to the depth of the counter sink or counter bore feature in the package side-wall, which is used to control the amount of braze runoff. The deeper the counter sinks or counter bores in relations with the side-wall thickness, the greater the risk of leak failure (or ceramic cracks). See Appendix A – D herein for further details.

Since this issue is not limited to a single manufacturer of hybrid packages, International Rectifier believes that this Basic Design Characteristic merits awareness and justifies the issue of this GIDEP to inform customers and manufacturers to avoid similar problems.

Appendix A – Hybrid Package Overview

Appendix B – Ceramic Seal Designs / Cross Sectional View

CERAMIC SEAL DESIGNS

Figure 3 – Illustrations of different ceramic seal designs for 0.040 inch side walls. The 0.005 inch countersink in the side-wall is considered safe.
Appendix C – Ceramic Seal Failure Mode Details

1. The deep counter sink does not allow sufficient compressive forces to be applied to the outer face of the ceramic.
2. The braze joint does not transfer enough compressive force from the frame to the ceramic.
3. This force imbalance creates a tensile force on the ceramic.
4. This condition can cause the ceramic to crack.

Figure 4 – Cross Sections (SEM Images) showing assembly details of different seal designs. Images 2 and 3 show the deep counter sink and counter bore designs that were shown to be problematic. The braze material fills the areas around the pin (inside the counter sink and counter bore), but the braze does not carry the same compression force as the frame material.

Figure 5 – Shows cross sectional image of ceramic seal with deep counter sink and ceramic cracks due to high tensile force.
Appendix D – Empirical Leak Test Data

Figure 6 - Based on Package Manufacturing Yield Data: As the bore length of the frame increases, the hermetic failure rate decreases.