The following IR Power MOSFET safe operating area (SOA) curves have been updated with the Direct Current (DC) mode curve.

Part Number INDEX:

1. IRHNJ57230U - 2N7591U3
2. IRHNLN7064U - 2N7604U
3. IRHYS7230CM - 2N7482T3
4. IRHLN97064U - 2N7622U2
5. IRHM9260 - 2N7426
6. IRHMS67264 - 2N7585T1
7. IRHMS97260U - 2N7549T1
8. IRHN025U - 2N7432U
9. IRNAS7205SE - 2N7473U2
10. IRJN1730 - 2N7583U5
11. IRJNS0704 - 2N7520U3
12. IRHYS7034CM - 2N7483T3
13. IRHNJ1730 - 2N7413U4
14. IRHN1915 - 2N7422U1
15. IRHNJ591730 - 2N7545U3
16. IRHM0664 - 2N7442
17. IRHNJ591860 - 2N7550U2
18. IRJM575034 - 2N7480U3
19. IRJN7230 - 2N7491U3
20. IRNAS9760U - 2N7524U2
21. IRJN7234SE - 2N7487U3 (FAB 5)
22. IRJN597230 - 2N7546U3
23. IRNAS1760 - 2N7469U2
24. IRHF57130 - 2N7493T2
25. IRHM997620U - 2N7523T1
26. IRHMS7064U - 2N7470T1
27. IRHMS7163SE - 2N7475T1
28. IRNAS97624U - 2N7546U3
29. IRHM597064U - 2N7524T1
30. IRHMS97160U - 2N7550T1
31. IRNAS7163SE - 2N7472U2
32. IRNAS9762SE - 2N7474U2
33. IRHMS5724SE - 2N7473T1
34. IRHMS5762SE - 2N7548T3
35. IRHMS57133SE - 2N7485U3
36. IRHMS97202SE - 2N7486U3
37. IRHYS57130CM - 2N7484T3
38. IRHMS57230CM - 2N7548T3
39. IRHYS97034CM - 2N7520T3
40. IRHYS97130CM - 2N7547T3
41. IRHE57234SE - 2N7502U5 (FAB 5)
42. IRHF57230 - 2N7491T2
43. IRHF5734SE - 2N7492T2
44. IRHMS7160 - 2N7471T1
45. IRNH57260U - 2N7467U2
46. IRNAS6704U - 2N7486U2
47. IRNAS9769U - 2N7532U2
48. IRNAS9769U - 2N7549U2
49. IRJN97230U - 2N7591U3
50. IRJN7234SE - 2N7491T2
51. IRJN97230U - 2N7546U3
52. IRJN97160U - 2N7469U2
53. IRJN87510 - 2N7492T2
54. IRHMS7133SE - 2N7500U5
55. IRHMS7160U - 2N7593U3
56. IRJN97234U - 2N7591U3
57. IRJN7133SE - 2N7501CM
58. IRHM57250SE - 2N7522U
59. IRHM57250SE - 2N7522U
60. IRHM57250SE - 2N7522U
61. IRHM57250SE - 2N7522U
62. IRHM57250SE - 2N7522U
63. IRHM57250SE - 2N7522U
64. IRHM57250SE - 2N7522U
65. IRHM57250SE - 2N7522U
66. IRHM57250SE - 2N7522U
67. IRHM57250SE - 2N7522U
68. IRHM57250SE - 2N7522U
69. IRHM57250SE - 2N7522U
70. IRHM57250SE - 2N7522U
71. IRHM57250SE - 2N7522U
72. IRHM57250SE - 2N7522U
73. IRHM57250SE - 2N7522U
74. IRHM57250SE - 2N7522U
75. IRHM57250SE - 2N7522U
76. IRHM57250SE - 2N7522U
77. IRHM57250SE - 2N7522U
78. IRHM57250SE - 2N7522U
79. IRHM57250SE - 2N7522U
80. IRHM57250SE - 2N7522U
81. IRHM57250SE - 2N7522U
82. IRHM57250SE - 2N7522U
83. IRHM57250SE - 2N7522U
84. IRHM57250SE - 2N7522U
85. IRHM57250SE - 2N7522U
86. IRHM57250SE - 2N7522U
87. IRHM57250SE - 2N7522U
88. IRHM57250SE - 2N7522U
89. IRHM57250SE - 2N7522U
90. IRHM57250SE - 2N7522U
91. IRHM57250SE - 2N7522U
92. IRHM57250SE - 2N7522U
93. IRHM57250SE - 2N7522U
94. IRHM57250SE - 2N7522U
95. IRHM57250SE - 2N7522U
96. IRHM57250SE - 2N7522U
97. IRHM57250SE - 2N7522U
98. IRHM57250SE - 2N7522U
99. IRHM57250SE - 2N7522U
100. IRHM57250SE - 2N7522U
101. IRHM57250SE - 2N7522U
102. IRHM57250SE - 2N7522U
103. IRHM57250SE - 2N7522U
104. IRHM57250SE - 2N7522U
105. IRHM57250SE - 2N7522U
106. IRHM57250SE - 2N7522U
107. IRHM57250SE - 2N7522U
108. IRHM57250SE - 2N7522U
109. IRHM57250SE - 2N7522U
110. IRHM57250SE - 2N7522U
111. IRHM57250SE - 2N7522U
112. IRHM57250SE - 2N7522U
113. IRHM57250SE - 2N7522U
114. IRHM57250SE - 2N7522U
115. IRHM57250SE - 2N7522U
116. IRHM57250SE - 2N7522U
117. IRHM57250SE - 2N7522U
118. IRHM57250SE - 2N7522U
119. IRHM57250SE - 2N7522U
120. IRHM57250SE - 2N7522U
121. IRHM57250SE - 2N7522U
122. IRHM57250SE - 2N7522U
123. IRHM57250SE - 2N7522U
124. IRHM57250SE - 2N7522U
125. IRHM57250SE - 2N7522U
126. IRHM57250SE - 2N7522U
127. IRHM57250SE - 2N7522U
128. IRHM57250SE - 2N7522U
129. IRHM57250SE - 2N7522U
130. IRHM57250SE - 2N7522U
131. IRHM57250SE - 2N7522U

Visit the IR website under the Alerts & Notifications section for current updates.

IRHNJ67230

Operation in this area limited by RDS(on)

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain Current (A)

$T_C = 25^{\circ}C$

$T_J = 150^{\circ}C$

Single Pulse

$100 \mu s$

$1 ms$

$10 ms$

DC

Operation in this area limited by RDS(on)
IRHLNA77064 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS\text{(on)}}$

- $T_c = 25°C$
- $T_j = 150°C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRHY57Z30CM - SOA CURVE

\[V_{DS}, \text{ Drain-to-Source Voltage (V)} \]

\[I_{D}, \text{ Drain-to-Source Current (A)} \]

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

Note:
- Operation in this area limited by \(R_{DS(on)}^{-} \)
IRHLNA797064 - SOA CURVE

- I_D, Drain-to-Source Current (A)
- V_{DS}, Drain-to-Source Voltage (V)

- OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

- $100\mu s$
- $1ms$
- $10ms$
- DC
IRHM9260 - SOA CURVE

- I_D, Drain-to-Source Current (A)
- $-V_{DS}$, Drain-to-Source Voltage (V)

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

100μs
1ms
10ms
DC
Operation in this area limited by RDS(on)
IRHMS597260 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

-I_D vs. $-V_{DS}$, Drain-to-Source Voltage (V)

$T_c = 25^\circ C$

$T_i = 150^\circ C$

Single Pulse
IRHN9250 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

V_{DS}, Drain-to-Source Voltage (V)

$-I_D$, Drain-to-Source Current (A)

$T_c = 25^\circ C$

$T_j = 150^\circ C$

Single Pulse

100μs, 1ms, 10ms
IRHNA57260SE - SOA CURVE

![Diagram showing the SOA curve with operation limited by $R_{DS(on)}$.](image-url)

- **I_D, Drain-to-Source Current (A)**
- **V_{DS}, Drain-to-Source Voltage (V)**

Specifications:
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

Time Intervals:
- 100µs
- 1ms
- 10ms

Limitations:
- Operation in this area is limited by $R_{DS(on)}$.

10
IRHNJ67130

Operation in this area limited by RDS(on)

Operation in this area limited by RDS(on)

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain Current (A)

$T_C = 25^\circ C$
$T_J = 150^\circ C$
Single Pulse

100µs
1ms
10ms
DC
IRHNJ597034 - SOA CURVE
IRHNJ57130 - SOA CURVE

 OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_I = 150^\circ C$
Single Pulse

V_{DS}, Drain-to-Source Voltage (V)
IRHNJ597130 - SOA CURVE

-\text{I}_D$, Drain-to-Source Current (A)

-\text{V}_{DS}$, Drain-to-Source Voltage (V)

OPERATION IN THIS AREA
LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_J = 150^\circ C$
Single Pulse

$100\mu s$
1ms
10ms

DC
IRHM9064 - SOA CURVE
IRHNA597160 - SOA CURVE

-\(V_{DS} \), Drain-to-Source Voltage (V)

-\(I_{D} \), Drain-to-Source Current (A)

OPERATION IN THIS AREA LIMITED BY \(R_{DS(on)} \)

-100μs

-1ms

-10ms

-DC

\(T_c = 25^\circ C \)

\(T_j = 150^\circ C \)

Single Pulse
IRHNJ57034 - SOA CURVE

![SOA Curve Diagram](image)

- OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$
- Tc = 25°C
- Tj = 150°C
- Single Pulse
- DC

V_{DS}, Drain-to-Source Voltage (V)

\log_{10} (Drain-to-Source Current (A))
IRHNJ57Z30 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse
IRHNA597Z60 - SOA CURVE

Operation in this area is limited by $R_{DS(on)}$. The graph shows the relationship between drain-to-source current (I_D) and drain-to-source voltage (V_{DS}) for different time intervals ($100\mu s$, 1 ms, 10 ms) under the following conditions:

- $T_c = 25^\circ\text{C}$
- $T_j = 150^\circ\text{C}$

The graph indicates the safe operating area for the device under single pulse conditions.
IRHNJ57234SE - SOA CURVE

- Operation in this area limited by $I_{DS(on)}$
- DC
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse
IRHNA57160 - SOA CURVE

![SOA Curve Diagram](image-url)

Operation Limit
- Operation in this area is limited by $R_{DS(on)}$.

Parameters
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse
- $V_{DS}, Drain-to-Source Voltage (V)$
- $I_{D}, Drain-to-Source Current (A)$

Time Constants
- 100μs
- 1ms
- 10ms
- DC
IRHF57130 - SOA CURVE

Diagram Description:

- The graph represents the SOA (Safe Operating Area) curve for IRHF57130.
- **Horizontal Axis (V_DS):** Drain-to-Source Voltage (V).
- **Vertical Axis (I_D):** Drain-to-Source Current (A).
- The curve is limited by the on resistance (R_DS(on)).
- Different time durations (100μs, 1ms, 10ms) are marked on the graph.
- Conditions:
 - Tc = 25°C
 - TJ = 150°C
 - Single Pulse

Key Points:

- Operation in this area is limited by R_DS(on).

25
IRHMS597Z60 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$-I_D$, Drain-to-Source Current (A)

$-V_{DS}$, Drain-to-Source Voltage (V)

$T_c = 25^\circ C$

$T_j = 150^\circ C$

Single Pulse

100μs

1 ms

10 ms

DC
IRHMS57064 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)

- $T_C = 25^\circ C$
- $T_J = 150^\circ C$
- Single Pulse
- $100\mu s$
- 1ms
- 10ms
- DC
IRHMS57264SE - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$
- $T_c = 25^\circ C$
- $T_i = 150^\circ C$
- Single Pulse

I_D vs. V_{DS}, Drain-to-Source Voltage (V)
IRHMS597064 - SOA CURVE

-\(I_D \), Drain-to-Source Current (A)

-\(V_{DS} \), Drain-to-Source Voltage (V)

Operation in this area limited by \(R_{DS(on)} \)

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

-100μs
-1ms
-10ms

DC
IRHNA57163SE - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRHNA57264SE - SOA CURVE
IRHNJ57133SE - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

$T_0 = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRHNJ57230SE - SOA CURVE

V_DS, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)

OPERATION IN THIS AREA LIMITED BY \(\frac{I_{DS\text{ (on)}}}{DS} \)

Tc = 25°C
Tj = 150°C
Single Pulse

100μs
1ms
10ms
DC
IRHY57130CM - SOA CURVE

The graph illustrates the SOA curve for IRHY57130CM, showing the relationship between the drain-to-source current (I_D) and the drain-to-source voltage (V_{DS}) for different pulse durations and temperatures. The operation in the highlighted area is limited by the on-resistance ($R_{DS(on)}$). The graph includes curves for different pulse durations (100μs, 1ms, 10ms) and a single pulse condition. The conditions for the graph are $T_c = 25°C$, $T_j = 150°C$, and a single pulse.
IRHY597230CM - SOA CURVE

Operation in this area limited by \(R_{DS(on)} \).

- \(T_c = 25^\circ C \)
- \(T_i = 150^\circ C \)
- Single Pulse

\(-V_{DS} \), Drain-to-Source Voltage (V) vs. \(-I_{DS} \), Drain-to-Source Current (A)

- 100 \(\mu \)S
- 1 ms
- 10 ms
- DC
IRHYS597034CM - SOA CURVE

OPERATION IN THIS AREA LIMITED BY \(R_{DS(on)} \)

\(-V_{DS}, \text{Drain-to-Source Voltage (V)}\)

\(-I_D, \text{Drain-to-Source Current (A)}\)

\(T_c = 25^\circ C \)

\(T_i = 150^\circ C \)

Single Pulse

100\(\mu \)s

1ms

10ms

DC
IRHY597130CM - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $D_{S(on)}$

$-I_{DS}$, Drain-to-Source Current (A)

$-V_{DS}$, Drain-to-Source Voltage (V)

$T_c = 25^\circ C$

$T_i = 150^\circ C$

Single Pulse

100μs

1ms

10ms

DC
IRHE57234SE - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$.
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

- Curves for different pulse durations:
 - 100μs
 - 1ms
 - 10ms
 - DC

- Note: This graph shows the safe operating area for the device under various conditions.
IRHF57Z30 - SOA CURVE

- Operation in this area limited by $D_{S(on)}$
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

Legend:
- 100μs
- 1ms
- 10ms
- DC
IRHF57034 - SOA CURVE

- Tc = 25°C
- Tj = 150°C
- Single Pulse

Operation in this area limited by $I_{DS(on)}$.

V_{DS}, Drain-to-Source Voltage (V)

I_{D}, Drain-to-Source Current (A)
IRHF57234SE - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

I_D, Drain-to-Source Current (A)

V_{DS}, Drain-to-Source Voltage (V)

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse
IRHMS57160 - SOA CURVE

Graph:
- **X-axis:** V_{DS} (Drain-to-Source Voltage) (V)
- **Y-axis:** I_{D} (Drain-to-Source Current) (A)
- **Legend:**
 - DC: Constant current source
 - $T_c = 25^\circ C$
 - $T_j = 150^\circ C$
 - Single Pulse

Important Information:
- OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$
- Time intervals: 100µs, 1ms, 10ms
IRHNA57Z60 - SOA CURVE

Operation in this area limited by \(R_{DS(on)} \).

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

\(V_{DS} \), Drain-to-Source Voltage (V)

\(I_D \), Drain-to-Source Current (A)
IRHNA57064 - SOA CURVE

The graph illustrates the safe operating area (SOA) for the IRHNA57064 device. The x-axis represents the drain-to-source voltage (V_{DS}) in volts, while the y-axis represents the drain-to-source current (I_D) in amperes. The graph shows how the device's safe operating limits are affected by different pulse durations, such as 100μs, 1ms, and 10ms. The operating conditions for the graph are specified as follows:

- $T_c = 25^\circ C$
- $T_i = 150^\circ C$
- Single Pulse

Operation in the shaded area is limited by $R_{DS(on)}$. The graph helps in understanding the device's performance limits under various conditions.
Operation in this area limited by RDS(on)

\[\text{Operation in this area limited by RDS(on)} \]

- TC = 25°C
- TJ = 150°C
- Single Pulse
- 100µs
- 1ms
- 10ms
- DC

V_{DS}, Drain-to-Source Voltage (V)

I_{D}, Drain Current (A)
IRHNA597064 - SOA CURVE

OPERATION IN THIS AREA
LIMITED BY $R_{DS(on)}$

$-I_D$, Drain-to-Source Current (A)

$-V_{DS}$, Drain-to-Source Voltage (V)

$T_0 = 25^\circ C$
$T_J = 150^\circ C$
Single Pulse

100, 10, 1, 0.1
IRHNA597260 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

- I_D, Drain-to-Source Current (A)
- $-V_{DS}$, Drain-to-Source Voltage (V)

$T_c = 25^\circ C$

$T_j = 150^\circ C$

Single Pulse
Operation in this area limited by RDS(on)

- TC = 25°C
- TJ = 150°C
- Single

V_DS, Drain-to-Source Voltage (V)
I_D, Drain Current (A)
IRHY597Z30CM - SOA CURVE

- Drain-to-Source Current (A)

- Drain-to-Source Voltage (V)

Operation in this area limited by $R_{DS(on)}$

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse
IRHF9130 - SOA CURVE

Operation in this area limited by \(R_{DS(on)} \).

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

\(-V_{DS} \), Drain-to-Source Voltage (V)

- \(I_D \), Drain-to-Source Current (A)
IRHM7054 - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)
IRHNA7260 - SOA CURVE

OPERATION IN THIS AREA LIMITED
BY \(R_{DS(on)} \)

\(V_{DS} \), Drain-to-Source Voltage (V)

\(I_D \), Drain-to-Source Current (A)

\(T_c = 25^\circ C \)
\(T_j = 150^\circ C \)
Single Pulse
DC

100μs
1ms
10ms
IRHF57133SE - SOA CURVE

The graph illustrates the safe operating area (SOA) for the IRHF57133SE device, showing the relationship between drain-to-source current (I_D) and drain-to-source voltage (V_DS). The curves represent different time intervals (100μs, 1ms, 10ms) and temperatures (Tc = 25°C, Tj = 150°C) under single pulse conditions. The region shaded in the graph indicates the operational limits, with the upper boundary marked by the turn-on voltage (V_DS(on)).
IRHF7130 - SOA CURVE

[Graph showing SOA characteristics with various curves and labels for current and voltage.]
IRHF57230SE - SOA CURVE

- OPERATION IN THIS AREA LIMITED
 BY $R_{DS(on)}$

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
IRHM7150 - SOA CURVE

Graph showing the relationship between Drain-to-Source Voltage (V_{DS}) and Drain-to-Source Current (I_D). The graph indicates operation limitations at various pulse durations ($100 \mu s$, $1 ms$, $10 ms$) and temperatures ($T_c = 25^\circ C$, $T_j = 150^\circ C$). The area marked as "OPERATION IN THIS AREA LIMITED BY R_{DS(on)}" is highlighted.

Note: The graph represents single pulse operation.
IRHN7250 - SOA CURVE

- Operation in this area limited by \(R_{DS(on)} \).
- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse
- DC

Graph shows the relationship between Drain-to-Source Current (\(I_D \)) and Drain-to-Source Voltage (\(V_{DS} \)).
IRHY7230CM - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse
- 100 μs
- 1 ms
- 10 ms
- DC
IRHNJ67C30 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$. For $T_c = 25^\circ C$, $T_j = 150^\circ C$, single pulse, and $100 \mu s$.

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRHY67C30CM - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$.
- $T_c = 25^\circ C$.
- $T_j = 150^\circ C$.
- Single Pulse.
IRHY57230CMSE - SOA CURVE

Operational Area:

- Drain-to-Source Current (I_D) vs. Drain-to-Source Voltage (V_{DS})
- Operation in this area limited by $R_{DS(on)}$

Conditions:

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse
- 10ms, 1ms, 100µs
- DC

Graphical Representation:

- Axes: I_D (Drain-to-Source Current) and V_{DS} (Drain-to-Source Voltage)
- Grid lines for reference

Legend:

- Operating areas marked with time intervals
IRHY67234CM

Operation in this area limited by RDS(on)

T_C = 25°C
T_J = 150°C
Single Pulse

I_D, Drain Current (A)

V_DS, Drain-to-Source Voltage (V)

0.01 0.1 1 10 100 1 10 100 1000

100µs 1ms 10ms DC
Operation in this area limited by RDS(on)

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain Current (A)

- $T_C = 25^\circ C$
- $T_J = 150^\circ C$
- Single Pulse

- 100µs
- 1ms
- 10ms
- DC
Operation in this area limited by RDS(on)

- VDS, Drain-to-Source Voltage (V)
- ID, Drain Current (A)

TC = 25°C
TJ = 150°C
Single Pulse

100µs
1ms
10ms
DC
IRHY57133CMSE - SOA CURVE

- OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

I_D, Drain-to-Source Current (A)

V_{DS}, Drain-to-Source Voltage (V)
IRHLUB7970Z4 / IRHLUBC7970Z4 - SOA CURVE

Operation in this area limited by \(R_{DS(on)} \).

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

\(I_{D, \max} \), Drain-to-Source Current (A)

\(-V_{DS} \), Drain-to-Source Voltage (V)
IRHM7160 - SOA CURVE

- Operation in this area limited by \(R_{DS(on)} \).
- Parameters: \(Tc = 25^\circ C \), \(Ti = 150^\circ C \), single pulse.
- Axes: \(I_D \), Drain-to-Source Current (A); \(V_{DS} \), Drain-to-Source Voltage (V).
IRHM9250 - SOA CURVE

Operational in this area limited by $R_{DS(on)}$.

$T_c = 25^\circ C$,
$T_j = 150^\circ C$,
Single Pulse.
Operation in this area limited by RDS(on)

\[I_D, \text{Drain Current (A)} \]

\[V_{DS}, \text{Drain-to-Source Voltage (V)} \]

- \(T_C = 25^\circ C \)
- \(T_J = 150^\circ C \)
- Single Pulse

1 10 100 1000

0.1 1 10 100 1000

100\mu s 1 ms 10 ms DC
Operation in this area limited by RDS(on)

IRHNA67260

- VDS, Drain-to-Source Voltage (V)
- ID, Drain Current (A)

TC = 25°C
TJ = 150°C
Single Pulse

100µs
1ms
10ms
DC
IRHYS67134CM

Operation in this area limited by RDS(on)

- **VDS, Drain-to-Source Voltage (V)**
- **ID, Drain Current (A)**
- **TC = 25°C**
- **TJ = 150°C**
- **Single Pulse**

- 100 µs
- 1 ms
- 10 ms
- DC

- **T_C = 25°C**
- **T_J = 150°C**

- **Single Pulse**
IRHLUB770Z4 / IRHLUBC770Z4 - SOACURVE

[Diagram showing SOA curve with labels and curves for DC, single pulse, and limits based on Tc and Ti conditions.]
IRHM7064 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

DC
IRHM7260 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_i = 150^\circ C$
Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

Id, Drain-to-Source Current (A)
Operation in this area limited by $R_{DS(on)}$.

- $T_C = 25^\circ C$
- $T_J = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain Current (A)
Operation in this area limited by RDS(on)
IRHN7150 - SOA CURVE

Operation in this area limited by \(R_{DS(on)} \).

\[\text{Tc} = 25^\circ C, \quad T_j = 150^\circ C \]

Single Pulse

\[V_{DS}, \text{Drain-to-Source Voltage (V)} \]

\[I_D, \text{Drain-to-Source Current (A)} \]
IRHNA7160 - SOA CURVE

Drain-to-Source Voltage (V) vs. Drain-to-Source Current (A) curve for different pulse durations:
- 100 μs
- 1 ms
- 10 ms

Temperature conditions:
- TC = 25°C
- TJ = 150°C

Operation in this area limited by R_DS(on).
Operation in this area limited by RDS(on)
IRHY7130CM - SOA CURVE

- Drain-to-Source Current (A) vs. Drain-to-Source Voltage (V)
- Operation in this area limited by $R_{DS(on)}$
- Parameters: $T_c = 25^\circ C$, $T_j = 150^\circ C$, Single Pulse
IRHYS67130CM

Operation in this area limited by RDS(on)

- $T_C = 25^\circ C$
- $T_J = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain Current (A)

- 100µs
- 1ms
- 10ms
- DC
Operation in this area limited by RDS(on)

IRHY67230CM

\[V_{DS}, \text{Drain-to-Source Voltage (V)} \]

\[I_D, \text{Drain Current (A)} \]

- \(T_C = 25^\circ C \)
- \(T_J = 150^\circ C \)
- Single Pulse

Timing:
- \(100 \mu s \)
- \(1 \text{ms} \)
- \(10 \text{ms} \)
- DC
IRHF9230 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$.

$T_c = 25\, ^\circ\text{C}$
$T_j = 150\, ^\circ\text{C}$
'Single Pulse'

$-D$, Drain-to-Source Current (A)

$-V_{DS}$, Drain-to-Source Voltage (V)
IRHM9160 - SOA CURVE

- I_D, Drain-to-Source Current (A)

- V_{DS}, Drain-to-Source Voltage (V)

- Operation in this area limited by $F_{DS(on)}$

- $T_c = 25°C$
- $T_j = 150°C$
- Single Pulse

- 100μs
- 1ms
- 10ms

DC
IRHNJ7130 - SOA CURVE

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)

OPERATION IN THIS AREA LIMITED BY R_{DS(on)}

T_c = 25°C
T_j = 150°C
Single Pulse

100μs
1ms
10ms
DC
IRHNJ7330SE - SOA CURVE
IRHE9230 - SOA CURVE

![SOA Curve Diagram]

- Drain-to-Source Current (A)
- Drain-to-Source Voltage (V)

- Operation in this area limited by $R_{DS(on)}$
- $Tc = 25^\circ C$
- $Tj = 150^\circ C$
- Single Pulse
- 100μs, 1ms, 10ms
IRHM7360SE - SOA CURVE

- OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$
- I_D, Drain-to-Source Current (A)
- V_{DS}, Drain-to-Source Voltage (V)
- $T_c = 25°C$
- $T_J = 150°C$
- Single Pulse

- Operational limits and conditions for the IRHM7360SE SOA curve, showing the relationship between drain-to-source current and voltage at different pulse durations.
IRHNA9064 - SOA CURVE

- Operation in this area limited by \(R_{DS(on)} \)
- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

- \(I_{D} \), Drain-to-Source Current (A)
- \(V_{DS} \), Drain-to-Source Voltage (V)
IRHNJ7430SE - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

$T_c = 25^\circ C$
$T_j = 150^\circ C$

Single Pulse
IRHNJ7230 - SOA CURVE

- Operation in this area limited by $R_{DS(ON)}$.

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
IRHNJ9130 - SOA CURVE

OERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

- $T_c = 25^\circ C$
- $T_i = 150^\circ C$
- Single Pulse

$-V_{DS}$, Drain-to-Source Voltage (V)

$-D_s$, Drain-to-Source Current (A)
IRF430 - SOA CURVE

- Operation in this area limited by \(R_{DS(on)} \)

Parameters:
- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

- DC

- \(V_{DS} \), Drain-to-Source Voltage (V)
- \(I_{D} \), Drain-to-Source Current (A)
IRFE310 - SOA CURVE

![SOA Curve Diagram](image-url)
IRFE430 - SOA CURVE
IRFF420 - SOA CURVE

![SOA Curve Diagram](image)

- **Operation in this area limited by** $R_{DS(on)}$
- Conditions:
 - $T_c = 25^\circ C$
 - $T_j = 150^\circ C$
- Single Pulse
- DC

- **I_D vs. V_{DS}**: Drain-to-Source Current vs. Drain-to-Source Voltage

- **Time Duration**:
 - 10μs
 - 1ms
 - 10ms
IRFM440 - SOA CURVE
IRFN440 - SOA CURVE
IRHF7330SE - SOA CURVE
IRHM7264SE - SOA CURVE

![Graph showing SOA curve for IRHM7264SE with labels: Drain-to-Source Current (A) on the y-axis, Drain-to-Source Voltage (V) on the x-axis, with various curves for different time durations and temperature conditions.]
IRHN7450 - SOA CURVE

\(V_{DS} \), Drain-to-Source Voltage (V)

\(I_D \), Drain-to-Source Current (A)

Operation in this area limited by \(R_{DS(on)} \).

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

10\(\mu \)s

10ms

1ms
IRF450 - SOA CURVE

[Graph showing SOA curve with specifications and operating conditions]

- Operation in this area limited by $V_{DS(on)}$
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse
IRFF310 - SOA CURVE

![SOA Curve Graph]

- Operation in this area limited by $R_{DS(on)}$
- $T_c = 25^\circ C$
- $T_i = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRFF430 - SOA CURVE

![SOA Curve Diagram](image)

- Operation in this area limited by $R_{DS(on)}$
- $T_C = 25^\circ C$
- $T_J = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRFM450 - SOA CURVE

![SOA Curve Diagram]

Key Points:
- **$T_0 = 25^\circ C$**
- **$T_j = 150^\circ C$**
- Single Pulse

Axes:
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)

Note: Operation in this area limited by $R_{DS(on)}$.

125
IRFN450 – SOA CURVE

- Operation in this area limited by \(D_S(\text{on}) \)

- \(I_D \), Drain-to-Source Current (A)
- \(V_{DS} \), Drain-to-Source Voltage (V)

- \(T_c = 25^\circ\text{C} \)
- \(T_I = 150^\circ\text{C} \)
- Single Pulse

- Lines for different time periods: 10μs, 1ms, 10ms, DC
IRHF7430SE - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$

$T_j = 150^\circ C$

Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRHM7450 - SOA CURVE

[Graph showing the SOA curve for IRHM7450 with axes labeled as: Drain-to-Source Current (A) on the y-axis and Drain-to-Source Voltage (V) on the x-axis. The graph includes lines for different pulse durations and temperature conditions.]
IRF230 - SOA CURVE

[Graph showing the Safe Operating Area (SOA) curve for IRF230, with axes for Drain-to-Source Current (ID) and Drain-to-Source Voltage (V_DS).]

- Operation in this area limited by R_DS(on).
- TC = 25°C
- TJ = 150°C
- Single Pulse
IRFE210 - SOA CURVE

Drain-to-Source Current (A) vs. Drain-to-Source Voltage (V)

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

V_{DS} = Drain-to-Source Voltage (V)

$T_c = 25^\circ$C, $T_I = 150^\circ$C, Single Pulse

100μs, 1ms, 10ms

DC
IRFF210 - SOA CURVE

[Diagram showing the SOA curve with labels for different time durations and temperatures.]

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$
IRFF220 - SOA CURVE

![SOA Curve Diagram](image)

- **Tc = 25°C**
- **TI = 150°C**
- **Single Pulse**
- **Operation in this area limited by RDS(on)**

V_DS , Drain-to-Source Voltage (V)

I_D , Drain-to-Source Current (A)

- **100 μs**
- **1 ms**
- **10 ms**

DC
IRFF230 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY R{DS(on)}_

\[I_D \] vs. \[V_{DS} \] (Drain-to-Source Voltage) - Drain-to-Source Current (A) vs. Drain-to-Source Voltage (V)

- \(T_c = 25^\circ C \)
- \(T_j = 150^\circ C \)
- Single Pulse

- \(100\mu s \)
- \(1\ms \)
- \(10\ms \)
IRFM250 - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$
- $T_c = 25^\circ$C
- $T_J = 150^\circ$C
- Single Pulse
IRFN240 - SOA CURVE
IRFN250 - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$
- TC = 25°C
- TJ = 150°C
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

$\log_{10}(I_D)$, Drain-to-Source Current (A)
IRHG57110 (4N) - SOA CURVE

 OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$.

 V_{DS}, Drain-to-Source Voltage (V)

 I_D, Drain-to-Source Current (A)

 $T_c = 25^\circ C$

 $T_j = 150^\circ C$

 Single Pulse

 DC

 100μs

 1ms

 10ms
IRHG567110 (2N) - SOA CURVE

- Operation in this area limited by $R_{DS(on)}$
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

$|I_D|$, Drain-to-Source Current (A)
IRHG597110 (4P) - SOA CURVE
IRHQ57110 (4N) - SOA CURVE

- OPERATION IN THIS AREA LIMITED BY R^{on}_{DS}
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

- $100 \mu s$
- $1 ms$
- $10 ms$
IRHQ567110 (2N) - SOA CURVE

OPERATION IN THIS AREA LIMITED BY R_DS(on)

V_DS, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)

Tc = 25°C
Tj = 150°C
Single Pulse

100μs
1ms
10ms
DC
IRHQ597110 (4P) - SOA CURVE

- I_D, Drain-to-Source Current (A)
- V_DS, Drain-to-Source Voltage (V)
- Operation in this area limited by R_DS(on)
- Tc = 25°C
- Tj = 150°C
- Single Pulse

100μs
1ms
10ms
DC
IRHY57234CMSE - SOA CURVE

- Drain-to-Source Current (A)
- Drain-to-Source Voltage (V)

- Operation in this area limited by $DS_{(on)}$
- $Tc = 25^\circ C$
- $Tj = 150^\circ C$
- Single Pulse

- Time durations: 10ms, 1ms, 100µs, DC
IRHNJ67230 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$. The graph shows the drain-to-source current (I_D) as a function of the drain-to-source voltage (V_{DS}) for different pulse durations at $T_c = 25^\circ\text{C}$, $T_i = 150^\circ\text{C}$, and a single pulse.
IRHNJ57234SE - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $P_{DS(on)}$

V_{DS}, Drain-to-Source Voltage (V)

ID, Drain-to-Source Current (A)

$T_c = 25^\circ C$

$T_j = 150^\circ C$

Single Pulse

0.01 1 10 100 1000

10 1 0.1 0.1

100μs 1ms 10ms DC
IRFM9240 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

- 100μs
- 1 ms
- 10 ms
- DC
IRFM350 - SOA CURVE

utation in THIS AREA LIMITED BY $I_{DS(on)}$

$T_c = 25^\circ C$

$T_j = 150^\circ C$

Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_D, Drain-to-Source Current (A)
IRFG9110 (4P) - SOA CURVE

![SOA Curve Diagram]

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$
IRFG6110 (2N-2P) - SOA CURVE
THIS IS FOR 2P

OPERATION IN THIS AREA LIMITED
BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

$-V_{DS}$, Drain-to-Source Voltage (V)
IRFG6110 (2N-2P) - SOA CURVE
THIS IS FOR 2N
IRFG5110 (2N-2P) - SOA CURVE
THIS IS FOR 2P

-\(I_D \), Drain-to-Source Current (A)

-\(V_{DS} \), Drain-to-Source Voltage (V)

\(Tc = 25^\circ C \)
\(Tj = 150^\circ C \)

Single Pulse

1ms
10ms
DC

OPERATION IN THIS AREA LIMITED BY \(R_{DS(on)} \)
IRFG5110 (2N-2P) - SOA CURVE

THIS IS FOR 2N
IRFF9230 - SOA CURVE

- I_D, Drain-to-Source Current (A)
- V_{DS}, Drain-to-Source Voltage (V)

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

$100 \mu s$, $1 ms$, $10 ms$, DC
IRFE9230 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

V_{DS}, Drain-to-Source Voltage (V)
IRFE9220 - SOA CURVE

-\text{\textbf{V}}_{DS}, \text{Drain-to-Source Voltage (V)}

-\text{\textbf{I}}_{D}, \text{Drain-to-Source Current (A)}

\text{OPERATION IN THIS AREA LIMITED BY } R_{DS(on)}$

T_c = 25^\circ\text{C}, \quad T_j = 150^\circ\text{C}
\text{Single Pulse}

100\mu\text{s}, \quad 1\text{ms}, \quad 10\text{ms}
IRF9230 - SOA CURVE

\[\text{Operation in this area limited by } R_{DS(on)} \]

\[T_c = 25^\circ C, \quad T_j = 150^\circ C \]

Single Pulse

\[-V_{DS}, \text{ Drain-to-Source Voltage (V)} \]

\[-I_D, \text{ Drain-to-Source Current (A)} \]

\[100, 10, 1, 0.1 \]

\[100\mu s, 1\text{ms}, 10\text{ms}, \text{DC} \]
IRFG110 (4N) - SOA CURVE
IRHF597230 - SOA CURVE
IRHLNM77110 - SOA CURVE

- Operation in this area limited by RDS(on).
- TC = 25°C
- TJ = 150°C
- Single Pulse

DC
100μs
10ms
1ms

V_DS, Drain-to-Source Voltage (V)
IRHN597110 - SOA CURVE

- \(V_{DS} \), Drain-to-Source Voltage (V)
- \(I_D \), Drain-to-Source Current (A)

Operation in this area limited by \(R_{DS(on)} \)

\(T_c = 25^\circ C \)
\(T_j = 150^\circ C \)
Single Pulse
100\(\mu s \)
1ms
10ms
DC
IRF330 - SOA CURVE
IRFF330 - SOA CURVE
IRHF7110 - SOA CURVE

![SOA Curve Diagram]

- Operation in this area limited by $R_{DS(on)}$
- $T_c = 25^\circ C$
- $T_J = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

ID, Drain-to-Source Current (A)
IRHLF77214 - SOA CURVE
IRHLQ77214 - SOA CURVE
IRFF320 - SOA CURVE

\[V_{DS}, \text{Drain-to-Source Voltage (V)} \]

\[I_D, \text{Drain-to-Source Current (A)} \]

- OPERATION IN THIS AREA LIMITED BY \(R_{DS(on)} \)
- \(T_c = 25^\circ\text{C} \)
- \(T_j = 150^\circ\text{C} \)
- Single Pulse
- DC

Timesteps: 10\(\mu\text{s} \), 1\(\text{ms} \), 10\(\text{ms} \)
IRFE320 - SOA CURVE

[Graph showing the SOA curve with Operation limited by R_{DS(on)} and curves for different times and conditions.]

V_{DS}, Drain-to-Source Voltage (V)

I_{D}, Drain-to-Source Current (A)

TC = 25°C
TI = 150°C
Single Pulse

DC
IRFE330 - SOA CURVE

Temperature:
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$

Operation in this area limited by $R_{DS(on)}$.

Time durations:
- 100µs
- 1ms
- 10ms

Currents and voltages are in DC andSingle Pulse modes.

V_{DS}, Drain-to-Source Voltage (V)

V_{DS}, Drain-to-Source Voltage (V)

V_{DS}, Drain-to-Source Voltage (V)
IRF130 - SOA CURVE

![IRF130 SOA Curve Diagram](image)

- OPERATION IN THIS AREA LIMITED BY $P_{DS(on)}$
- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)
- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse
IRFM9140 - SOA CURVE

-\(V_{DS} \), Drain-to-Source Voltage (V)

-\(I_{DS} \), Drain-to-Source Current (A)

- Operation in this area limited by \(R_{DS(on)} \)

- \(T_{C} = 25^\circ C \)
- \(T_{J} = 150^\circ C \)
- Single Pulse

- 100\(\mu s \)
- 1\(ms \)
- 10\(ms \)
- DC
IRFN350 - SOA CURVE

Operation in this area limited by $\frac{I_{D}}{I_{DS(on)}}$.

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

V_{DS}, Drain-to-Source Voltage (V)

I_{D}, Drain-to-Source Current (A)
IRHLF7970Z4 - SOA CURVE

OPERATION IN THIS AREA LIMITED BY $R_{DS(on)}$

$T_c = 25^\circ C$
$T_j = 150^\circ C$
Single Pulse

$-D_{DS}$, Drain-to-Source Current (A)

$-V_{DS}$, Drain-to-Source Voltage (V)
IRHLNJ797034 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

$T_c = 25^\circ C$
$T_j = 150^\circ C$

Single Pulse

$-V_{DS}$, Drain-to-Source Voltage (V)
IRHN57250SE - SOA CURVE
IRF350 - SOA CURVE

[Graph showing the relationship between drain-to-source current (I_D) and drain-to-source voltage (V_DS) with T_C = 25°C, T_J = 150°C, and single pulse operation.]
IRFN340 - SOA CURVE
IRFN9140 - SOA CURVE
IRHLF77110 - SOA CURVE

Operation in this area limited by $R_{DS(on)}$.

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain-to-Source Current (A)

- $T_c = 25^\circ C$
- $T_j = 150^\circ C$
- Single Pulse

- 100μs
- 1ms
- 10ms
- DC
IRHLYS797034CM - SOA CURVE

-\text{V}_{DS}, \text{Drain-to-Source Voltage (V)}

-\text{I}_{DS}, \text{Drain-to-Source Current (A)}

\text{OPERATION IN THIS AREA LIMITED BY } R_{DS}^{(on)}

\begin{align*}
\text{T}_c &= 25^\circ\text{C} \\
\text{T}_j &= 150^\circ\text{C} \\
\text{Single Pulse}
\end{align*}

\begin{align*}
\text{DC} \\
10\text{ms} \\
1\text{ms} \\
100\mu\text{s}
\end{align*}