This GIDEP PCN is to announce a change in theDatasheet characteristics for the following International Rectifier Part No. and to change the datasheet status from Preliminary to Final.

IRHLNA797064 [2N7622U2]

60V, 100kRad, P-Channel, TID Hardened MOSFET in a SMD-2 Surface Mount package

Features

Add ESDS Rating Class 3B

Electrical Characteristics @ Tj = 25°C

- Change $R_{DS(on)}$ Static Drain-to-Source On-State Resistance; from max limit of 0.015ohm to 0.017ohm
- Change g_{fs} Forward Transconductance; from min limit of 82S to 65S
- Change I_{DSS} Zero Gate Voltage Drain Current ($T_J = 125°C$); from max limit of -10uA to -25uA
- Change Q_g Total Gate Charge; from max limit of 190nC to 130nC
- Change Q_{gs} Gate-to-Source Charge; from max limit of 53nC to 35nC
- Change Q_{gd} Gate-to-Drain (Miller) Charge; from max limit of 56nC to 55nC

Source-Drain Diode Ratings and Characteristics

- Change t_{rr} Reverse Recovery Time; from max limit of 159ns to 150ns

Radiation Characteristics

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation

- Change I_{DSS} Zero Gate Voltage Drain Current; from max limit of -10uA to -1uA
- Change $R_{DS(on)}$ Static Drain-to-Source On-State Resistance (TO-3); from max limit of 0.015ohm to 0.019ohm
- Change $R_{DS(on)}$ Static Drain-to-Source On-State Resistance (SMD-2); from max limit of 0.015ohm to 0.017ohm

Reference: IR Datasheet PD-97174
Radiation Characteristics

Table 2. Single Event Effect Safe Operating Area

Change Table 2 and Figure a from:

<table>
<thead>
<tr>
<th>Ion</th>
<th>LET (MeV/(mg/cm²))</th>
<th>Energy (MeV)</th>
<th>Range (µm)</th>
<th>@ VGS=0V</th>
<th>@ VGS=2V</th>
<th>@ VGS=4V</th>
<th>@ VGS=5V</th>
<th>@ VGS=6V</th>
<th>@ VGS=7V</th>
<th>@ VGS=8V</th>
<th>@ VGS=10V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br</td>
<td>37</td>
<td>305</td>
<td>39</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-30</td>
<td>-25</td>
<td>-20</td>
</tr>
<tr>
<td>I</td>
<td>80</td>
<td>370</td>
<td>34</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-20</td>
<td>-</td>
</tr>
<tr>
<td>Au</td>
<td>82</td>
<td>390</td>
<td>30</td>
<td>-60</td>
<td>-60</td>
<td>-60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig a. Single Event Effect, Safe Operating Area

to:

<table>
<thead>
<tr>
<th>LET (MeV/(mg/cm²))</th>
<th>Energy (MeV)</th>
<th>Range (µm)</th>
<th>VDS (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.4</td>
<td>679</td>
<td>83.3</td>
<td>@ VGS=0V</td>
</tr>
<tr>
<td>61.7</td>
<td>584</td>
<td>48.7</td>
<td>-60</td>
</tr>
<tr>
<td>92.3</td>
<td>1156</td>
<td>65.1</td>
<td>-40</td>
</tr>
</tbody>
</table>

Fig a. Typical Single Event Effect, Safe Operating Area