

Low Dropout Positive Voltage Regulator

OM7671NM 3.3V, 2.6A

Product Summary

Part Number	Output Voltage	Output Current	Package	
OM7671NM	3.3V	2.6A	SMD-1	

Description

This series of +3.3V voltage regulators are high current, high accuracy, low dropout regulators and are well suited for systems where low dropout voltages are critical. These devices feature protection against overtemperature, overcurrent, reverse polarity conditions and voltage spikes. The SMD-1 hermetic package meets the demand for military/defense environments.

Features

- Low Dropout Voltage and Ground Currents
- High Current Capability
- Built-in Thermal Overload Protection
- Short Circuit Current Limiting
- Output Voltage Tolerance Guaranteed to ± 1%
- Hermetic SMD-1 Package Ensures High Reliability
- Output Current 2.6A
- This part is also available in
 TO-204AA Package as OM7671NK
 TO-257AA Package as OM7671ST(Isolated)
 3-Pin Surface Mount (SMD-3) Package as OM7671SM

Absolute Maximum Ratings @ Tc =25°C

Parameter	Symbol	Value	Units	
Output Current	Io	2.6	Α	
Input Voltage	V _{IN}	30	V	
Power Dissipation	P _D	26	W	
Thermal Resistance, Junction to Case	$R_{ heta JC}$	4.2	°C/W	
Operating Junction Temperature Range	T _J	-55 to +125		
Storage Temperature Range	T _{STG}	-65 to +150	°C	
Pckg. Mounting Surface Temperature	T _P	300 (for 5s)		

Electrical Characteristics -55°C \leq T_A \leq 125°C (Unless Otherwise Specified)

Parameter	Symbol	Test Conditions	Min.	Max.	Units	
Output Voltage	V _{OUT}	V _{IN} = 5.0V, I _{OUT} = 10mA, T _A = 25°C	3.267	3.333	V	
		$4.75V \le V_{IN} \le 18V$, $10mA \le I_{OUT} \le I_{LMIN}$ ③	3.235	3.365	'	
Line Regulation ①	$\triangle V_{OUT} / \triangle V_{IN}$	4.5V ≤ V _{IN} ≤ 18V, I _{OUT} = 0 A ③	-	12	12	
Load Regulation ①	△V _{OUT} / △I _{OUT}	$V_{IN} = 5.0V, 0A \le I_{OUT} \le I_{LMIN}, T_A = 25^{\circ}C$	-	15	mV	
		V _{IN} = 5.0V, 0A ≤ I _{OUT} ≤ I _{LMIN} ③	-	25		
Dropout Voltage	V _{DROP}	I _{OUT} = I _{LMIN} , △V _{REF} = 1% ③	-	1.5	٧	
Thermal Regulation	-	Pulse Width = 30ms, T _A = +25°C	-	0.04	%/W	
Ripple Rejection	$\triangle V_{IN} / \triangle V_{OUT}$	f = 120Hz, C _{Adj} = 25μF,	60 -		dB	
		C _{OUT} = 25μF (tantalum), I _{OUT} = I _{LMIN} ^③		-		
		V _{IN} = 6.3V				
Quiescent Current	ΙQ	V _{IN} = 18V ③	-	10	mA	
Current Limit	ΙL	V _{IN} = 8.3V ③	2.6	-	_	
		V _{IN} =28V ③	0.050	-	A	
Temperature Stability ②	$\triangle V_{OUT} / \triangle T$	-55°C ≤ T _J ≤ +125°C	-	1.55	%	
Long Term Stability ②	$\triangle V_{OUT} / \triangle T$	T _A = +125°C, t = 1000hrs		1.0		

Notes

- 1. Line and load regulation are measured at a constant junction temperature using a low duty cycle pulse technique. Although power dissipation is internally limited, regulation is guaranteed up to the maximum power dissipation of 26W. Power dissipation is determined by the input/output differential voltage and output current. Guaranteed maximum power dissipation will not be available over the full input/output voltage range.
- 2. Guaranteed by design, characterization or correlation to other tested parameters.
- 3. Specifications apply over the operating temperature range.

Short Circuit Current 2 NDICATES GUARANTEED TEST POINT $-55^{\circ}C \le T_{J} \le 150^{\circ}C$ $T_{J} = 150^{\circ}C$ $T_{J} = 150^{\circ}C$ OUTPUT CURRENT (A)

Fig 1: Typical Minimum Output Differential Vs Output Current

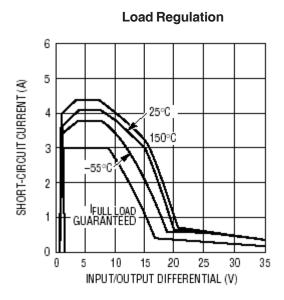


Fig 2: Typical Short Circuit Current Vs Input/Output Differential

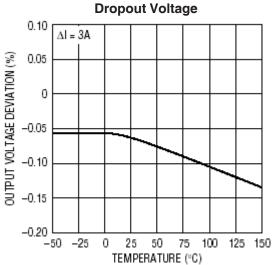
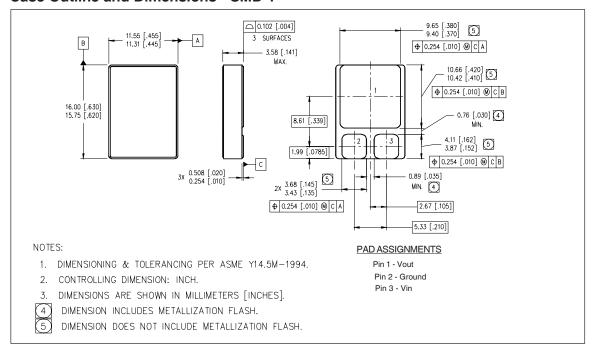
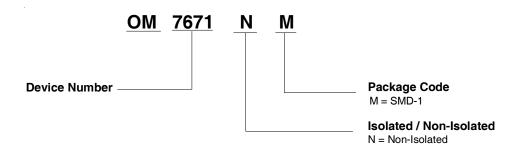




Fig 3: Typical Output Voltage Deviation Vs Temperature

Case Outline and Dimensions - SMD-1

Part Numbering Nomenclature

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
Data and specifications subject to change without notice. 07/2007