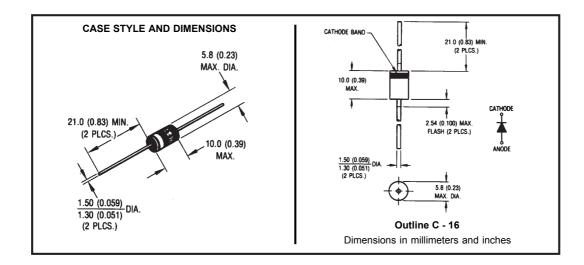
International Rectifier

MBR340

SCHOTTKY RECTIFIER

3.0 Amp


Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	30/40	V
I _{FSM} @tp=5μssine	430	А
V _F @3 Apk, T _J = 25°C	0.6	V
T _J	-40 to 150	°C

Description/ Features

The MBR340 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- · Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- · Lead-Free plating

Voltage Ratings

Part number	MBR340
V _R Max. DC Reverse Voltage (V)	40
V _{RWM} Max. Working Peak Reverse Voltage (V)	40

Absolute Maximum Ratings

	Parameters	MBR340	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current * See Fig. 4	3.0	А	50% duty cycle @ T _C = 92°C, re	ctangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	430	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and wit	
	Surge Current *See Fig. 6	80		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	6.0	mJ	T _J = 25 °C, I _{AS} = 1 Amps, L = 12 mH		
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. $V_A = 1.5 \text{ x V}_R$ typical		

Electrical Specifications

	Parameters	MBR340	Units	C	Conditions
V _{FM}	Max. Forward Voltage Drop	0.5	V	@ 1.0A	
	* See Fig. 1 (1)	0.6	V	@ 3.0A	T _{,J} = 25 °C
		0.85	V	@ 9.4A	-
		0.37	V	@ 1.0A	
		0.49	V	@ 3.0A	T _{,J} = 125 °C
		0.72	V	@ 9.4A	_
I _{RM}	Max. Reverse Leakage Current	0.6	mA	T _J = 25 °C	
	* See Fig. 2 (1)	8	mA	T _J = 100 °C	V _R = rated V _R
		20	mA	T _J = 125 °C	
C _T	Typical Junction Capacitance	190	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _S	Typical Series Inductance	9.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	MBR340	Units	Conditions
T	Max. Junction Temperature Range(*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJL}	Typical Thermal Resistance Junction to Lead (**)	28	°C/W	DC operation (* See Fig. 4)
wt	Approximate Weight	1.2 (0.042)	g (oz.)	
	Case Style	C - 16		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB, thermal probe connected to lead 2mm from package

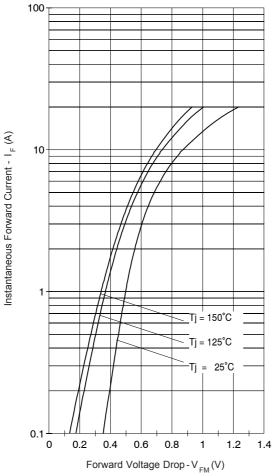


Fig. 1 - Max. Forward Voltage Drop Characteristics

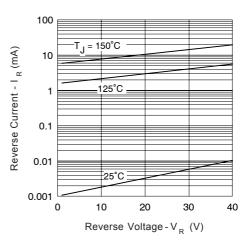


Fig. 2 - Typical Values Of Reverse Current Vs. Reverse Voltage

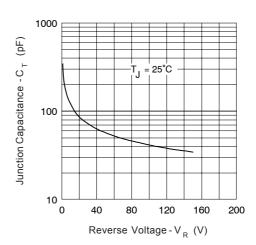


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage



Fig. 4 - Max. Allowable Lead Temperature Vs. Average Forward Current

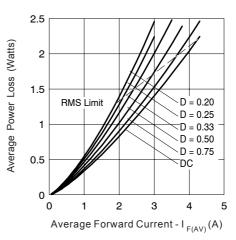


Fig. 5-Forward Power Loss Characteristics

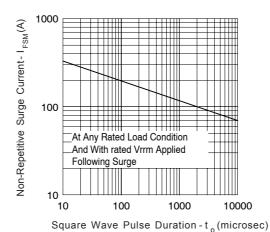
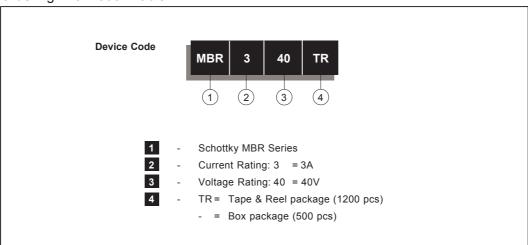



Fig. 6 - Max. Non-Repetitive Surge Current

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) x R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} x V_{FM} @ (I_{F(AV)} / D) \text{ (see Fig. 6)}$; $Pd_{REV} = Inverse Power Loss = V_{R1} x I_R (1 - D); I_R @ V_{R1} = 80\% \text{ rated } V_R$

Bulletin PD-20593 rev. C 12/04

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 12/04