PD -9.1344A

IRLIZ24N

International **10R** Rectifier

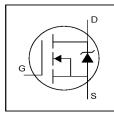
PRELIMINARY

HEXFET[®] Power MOSFET

- Logic-Level Gate Drive
- Advanced Process Technology
- Isolated Package
- High Voltage Isolation = 2.5KVRMS (5)
- Sink to Lead Creepage Dist. = 4.8mm
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.


The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	14		
l _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	9.9	A	
IDM	Pulsed Drain Current 106	72	7	
Pp@Tc = 25°C	Power Dissipation	26	W	
	Linear Derating Factor	0.17	W/°C	
Vgs	Gate-to-Source Voltage	±16	V	
E _{AS}	Single Pulse Avalanche Energy 26	68	mJ	
AR	Avalanche Current®®	11	A	
E _{AR}	Repetitive Avalanche Current 106	4.5	mJ	
dv/dt	Peak Diode Recovery dv/dt 36	4.6	V/ns	
Tj	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	\neg	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case			5.8	
R _{eja}	Junction-to-Ambient			65	°C/W

$$V_{DSS} = 55V$$

 $R_{DS(on)} = 0.06\Omega$
 $I_D = 14A$

IRLIZ24N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$		
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.061		V/°C	Reference to 25°C, ID = 1mA®		
R _{DS(on)}	Static Drain-to-Source On-Resistance	—	—	0.060		V _{GS} = 10V, I _D = 8.4A ④		
			—	0.075	Ω	V _{GS} = 5.0V, I _D = 8.4A ④		
		—	—	0.105		V _{GS} = 4.0V, I _D = 7.0A ④		
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	V _{DS} = V _{GS} , I _D = 250µA		
g _{fs}	Forward Transconductance	8.3			S	V _{DS} = 25V, I _D = 11A 6		
	Drain-to-Source Leakage Current		—	25	μA	V _{DS} = 55V, V _{GS} = 0V		
DSS			—	250		V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C		
	Gate-to-Source Forward Leakage		—	100		V _{GS} = 16V		
GSS	Gate-to-Source Reverse Leakage	—		-100	nA	V _{GS} = -16V		
Qg	Total Gate Charge			15		I _D = 11A		
Qgs	Gate-to-Source Charge			3.7	nC	$V_{DS} = 44V$		
Q _{gd}	Gate-to-Drain ("Miller") Charge		—	8.5	1 1	V _{GS} = 5.0V, See Fig. 6 and 13 ⊛€		
t _{d(on)}	Turn-On Delay Time		7.1			V _{DD} = 28V		
tr	Rise Time		74		ns	I _D = 11A		
td(off)	Turn-Off Delay Time		20		115	R _G = 12Ω, V _{GS} = 5.0V		
tf	Fall Time		29			R _D = 2.4Ω, See Fig. 10 ④⑥		
LD	Internal Drain Inductance	_	4.5	—	nH	Between lead,		
						6mm (0.25in.)		
Ls	Internal Source Inductance	—	7.5			from package		
						and center of die contact		
Ciss	Input Capacitance	—	480			V _{GS} = 0V		
Coss	Output Capacitance		130		рF	V _{DS} = 25V		
Crss	Reverse Transfer Capacitance		61	—		f = 1.0MHz, See Fig. 5 6		
С	Drain to Sink Capacitance		12			f = 1.0MHz		

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			14		MOSFET symbol
	(Body Diode)		_	- 14	A	showing the
I _{SM}	Pulsed Source Current			72	,,,	integral reverse
	(Body Diode) 🛈 🏵	i — I		12		p-n junction diode.
Vsd	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 8.4A, V _{GS} = 0V ④
trr	Reverse Recovery Time		60	90	ns	T _J = 25°C, I _F = 11A
Q _{rr}	Reverse RecoveryCharge		130	200	nC	di/dt = 100A/µs ⊕©

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $V_{DD} = 25V$, starting T_J = 25°C, L = 790µH R_G = 25 Ω , I_{AS} = 11A. (See Figure 12)

④ Pulse width \leq 300µs; duty cycle \leq 2%.

𝔅 t=60s, f=60Hz

③ $I_{SD} \le 11A$, di/dt $\le 290A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{,1} \le 175^{\circ}C$

© Uses IRLZ24N data and test conditions

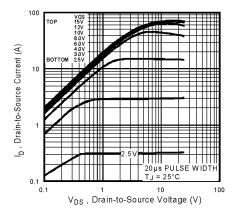
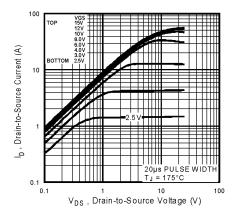
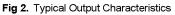




Fig 1. Typical Output Characteristics

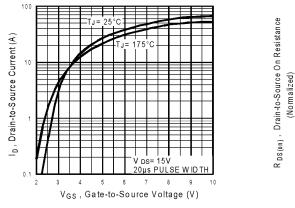


Fig 3. Typical Transfer Characteristics

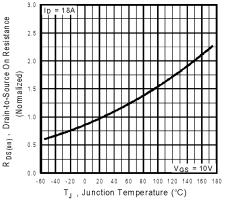
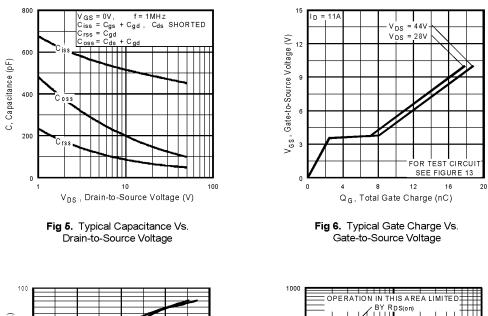
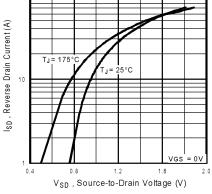




Fig 4. Normalized On-Resistance Vs. Temperature

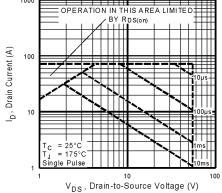
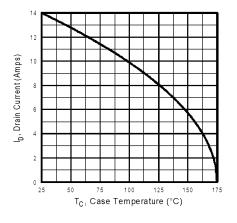
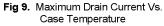




Fig 8. Maximum Safe Operating Area

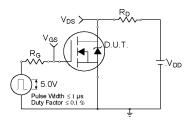
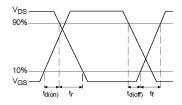
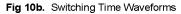




Fig 10a. Switching Time Test Circuit

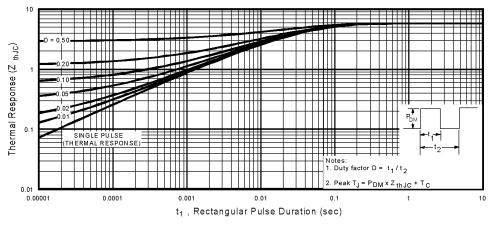


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

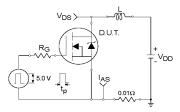


Fig 12a. Unclamped Inductive Test Circuit

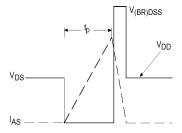


Fig 12b. Unclamped Inductive Waveforms

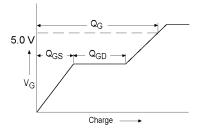


Fig 13a. Basic Gate Charge Waveform

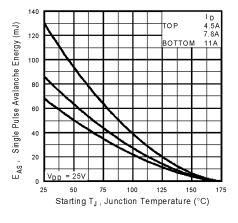


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

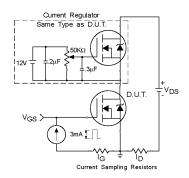
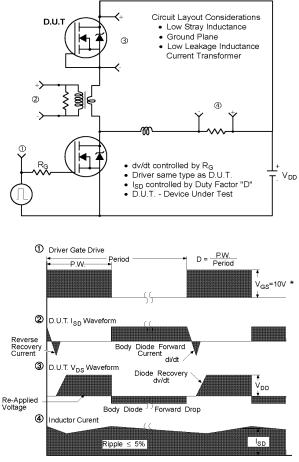



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

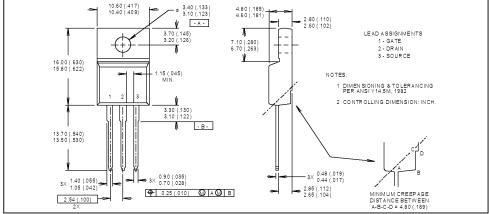

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

Package Outline


TO-220 FullPak Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-220 FullPak

 IR TALY:
 Via Liguria 49, 10071
 Borgaro, Torino Tel: ++ 39 11 451 0111

 IR FAR EAST:
 K&H Bldg., 2F, 30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086

 IR SOUTHEAST ASIA:
 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

 http://www.inf.com/
 Data and specifications subject to change without notice.

Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>