HEXFRED
ULTRAFAST, SOFT RECOVERY DIODE

Features
- Reduced RFI and EMI
- Reduced Snubbing
- Extensive Characterization of Recovery Parameters
- Hermetically Sealed
- Surface Mount

Description
HFA40HF120C is part of the International Rectifier HiRel family of products. These Ultrafast, soft recovery diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and di/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

Absolute Maximum Ratings (Per Leg)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Characteristics</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_R</td>
<td>Cathode to Anode Voltage</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>Continuous Forward Current $\otimes T_C = 100^\circ C$</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>Single Pulse Forward Current $\otimes T_C = 25^\circ C$</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>$P_D @ T_C = 25^\circ C$</td>
<td>Maximum Power Dissipation</td>
<td>63</td>
<td>W</td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating Junction and Storage Temperature Range</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
- \otimes D.C. = 50% rectangle wave
- \otimes 1/2 sine wave, 60Hz, Pulse Width = 8.33ms

PIN ASSIGNMENTS

<table>
<thead>
<tr>
<th>PIN ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ISOLATED BASE)</td>
</tr>
<tr>
<td>1 ANODE 1</td>
</tr>
<tr>
<td>2 COMMON CATHODE</td>
</tr>
<tr>
<td>3 ANODE 2</td>
</tr>
</tbody>
</table>
Thermal - Mechanical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JC}</td>
<td></td>
<td>2.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>Wt</td>
<td>2.6</td>
<td></td>
<td>g</td>
</tr>
</tbody>
</table>

Electrical Characteristics (Per Leg) @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BR}</td>
<td>1200</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_R = 250\mu$A</td>
</tr>
<tr>
<td>V_{FM}</td>
<td>—</td>
<td>—</td>
<td>3.9</td>
<td>V</td>
<td>$I_F = 7.0\text{A}, T_J = -55^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>3.3</td>
<td>V</td>
<td>$I_F = 7.0\text{A}, T_J = 25^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>4.4</td>
<td>V</td>
<td>$I_F = 15\text{A}, T_J = 25^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>2.8</td>
<td>V</td>
<td>$I_F = 7.0\text{A}, T_J = 125^\circ\text{C}$</td>
</tr>
<tr>
<td>I_{RM}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>μA</td>
<td>$V_R = V_R \text{ Rated}$</td>
</tr>
<tr>
<td>C_T</td>
<td>—</td>
<td>15</td>
<td>20</td>
<td>pF</td>
<td>$V_R = 200\text{V}$</td>
</tr>
<tr>
<td>L_S</td>
<td>—</td>
<td>2.8</td>
<td>—</td>
<td>nH</td>
<td>Measured from center of bond pad to end of anode bonding wire</td>
</tr>
</tbody>
</table>

Dynamic Recovery Characteristics (Per Leg) @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{tr1}</td>
<td>—</td>
<td>58</td>
<td>100</td>
<td>ns</td>
<td>$T_J = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>t_{tr2}</td>
<td>—</td>
<td>110</td>
<td>165</td>
<td>ns</td>
<td>$T_J = 125^\circ\text{C}$</td>
</tr>
<tr>
<td>I_{RRM1}</td>
<td>—</td>
<td>5.4</td>
<td>8.1</td>
<td>A</td>
<td>$T_J = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>I_{RRM2}</td>
<td>—</td>
<td>7.2</td>
<td>10.8</td>
<td>A</td>
<td>$T_J = 125^\circ\text{C}$</td>
</tr>
<tr>
<td>Q_{r1}</td>
<td>—</td>
<td>185</td>
<td>370</td>
<td>nC</td>
<td>$T_J = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>Q_{r2}</td>
<td>—</td>
<td>395</td>
<td>590</td>
<td>nC</td>
<td>$T_J = 125^\circ\text{C}$</td>
</tr>
<tr>
<td>$\frac{di_{\text{rec}}}{dt}$</td>
<td>—</td>
<td>255</td>
<td>380</td>
<td>A/µs</td>
<td>$T_J = 25^\circ\text{C}$</td>
</tr>
<tr>
<td>$\frac{di_{\text{rec}}}{dt}$</td>
<td>—</td>
<td>160</td>
<td>240</td>
<td>A/µs</td>
<td>$T_J = 125^\circ\text{C}$</td>
</tr>
</tbody>
</table>
Fig. 1 Typical Forward Voltage Drop Vs. Instantaneous Forward Current (Per Leg)

Fig. 2 Typical Values of Reverse Current Vs. Reverse Voltage (Per Leg)

Fig. 3 Typical Junction Capacitance Vs. Reverse Voltage (Per Leg)

Fig. 4 Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Notes:
1. Duty factor $D = \frac{t_1}{t_2}$
2. Peak $T_J = P_{DM} \times Z_{\text{thJC}} + T_C$
Fig. 5 Typical Reverse Recovery Vs $\frac{di}{dt}$ (Per Leg)

Fig. 6 Typical Recovery Current Vs $\frac{di}{dt}$ (Per Leg)

Fig. 7 Typical Stored Charge Vs $\frac{di}{dt}$ (Per Leg)

Fig. 8 Typical $\frac{di(\text{rec})}{dt}$ Vs $\frac{di}{dt}$ (Per Leg)

Fig. 9 Typical Reverse Recovery Parameter Test Circuit

Fig. 10 Reverse Recovery Waveform and Definitions

1. $\frac{di}{dt}$ - Rate of change of current through zero crossing.
2. I_{RRM} - Peak reverse recovery current.
3. t_{rr} - Reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75I_{RRM} and 0.5I_{RRM} extrapolated to zero current.
4. Q_{rr} - Area under curve defined by t_{rr} and I_{RRM}, $Q_{\text{rr}} = (t_{\text{rr}} \times I_{\text{RRM}}) / 2$
5. $\frac{di(\text{rec})}{dt}$ - Peak rate of change of current during t_B position of t_{rr}.

$V_R = 200V$
$L = 70\mu H$
$I_F = 14A$
$I_F = 7A$
$I_F = 3.5A$
$V = 200V$
$T_J = 125^\circ C$
$T_J = 25^\circ C$
R_J

ADJUST

IRFP250

G
S
D

100 1000
$\frac{di}{dt}$ - (A/\mu s)

10
Q_{rr} - (nC)

100 1000
$\frac{di(\text{rec})}{dt}$ - (A/\mu s)

10
$0.75 I_{\text{RRM}}$

100 1000
$\frac{di}{dt}$ - (A/\mu s)

10
I_{RRM}

100 1000
$\frac{di}{dt}$ - (A/\mu s)

10
I_{RRM}

100 1000
$\frac{di}{dt}$ - (A/\mu s)

10
I_{RRM}

100 1000
$\frac{di}{dt}$ - (A/\mu s)

10
I_{RRM}
Case Outline and Dimensions — SMD-1

NOTES:
2. CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. DIMENSION INCLUDES METALLIZATION FLASH.
5. DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

PAD ASSIGNMENTS
Refer to page 1.
IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non-infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s product and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer’s technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.