International Rectifier

30BQ015PbF

SCHOTTKY RECTIFIER

3 Amp

$$I_{F(AV)} = 3.0 Amp$$

 $V_R = 15 V$

Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	15	V
I _{FSM} @t _p =5μs sine	650	А
V _F @1.0Apk, T _J = 75°C	0.30	V
T _J range	- 55 to 125	°C

Description/ Features

The 30BQ015PbF surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. The proprietary barrier technology allows for reliable operation up to 125°C junction temperature. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- 125°C T_J operation (V_R < 5V)
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Lead-Free ("PbF" suffix)

Voltage Ratings

Part number		30BQ015PbF		
V _R	Max. DC Reverse Voltage (V)	15		
V _{RWN}	Max. Working Peak Reverse Voltage (V)	25		

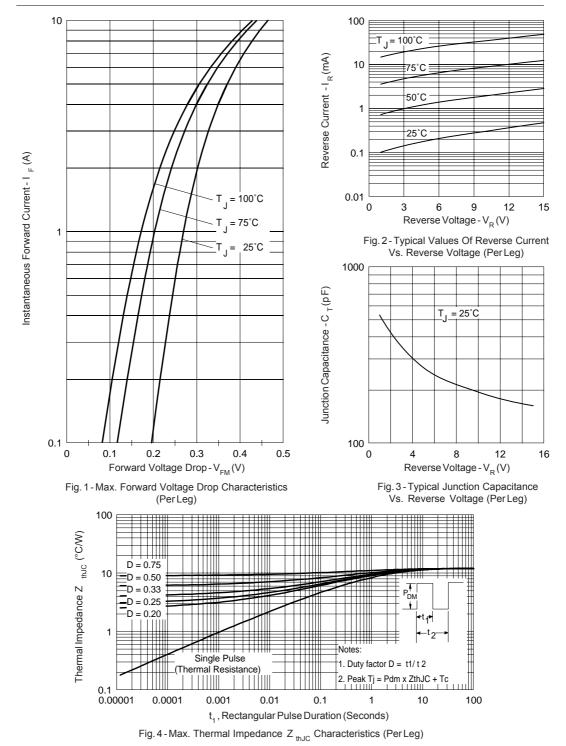
Absolute Maximum Ratings

	Parameters	30BQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L = 83 °C, rectangular wave form	
		4.0		50% duty cycle @ T _L = 78 °C, re	ectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	650	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	75		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	1.5	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 0.5\text{A}, L = 12\text{mH}$	
I _{AR}	Repetitive Avalanche Current	0.5	Α	Current decaying linearly to zero in 1 μ sec Frequency limited by $T_{_J}$ max. $Va = 1.5 x Vr$ typical	

Electrical Specifications

	Parameters	30BQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.35	V	@ 3A	T _J = 25 °C
		0.40	V	@ 6A	
		0.30	V	@ 3A	T _J = 75 °C
		0.35	V	@ 6A	
I _{RM}	Max. Reverse Leakage Current (1)	4	mA	T _J = 25 °C	$V_R = \text{rated } V_R$
		50	mA	T _J = 100 °C	
C _T	Max. Junction Capacitance	1120	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters	30BQ	Units	Conditions
T	Max. Junction Temperature Range (*)	-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DC operation
wt	Approximate Weight	0.24(0.008)g(oz.)		
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR3C		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

Bulletin PD-20406 rev. A 05/05

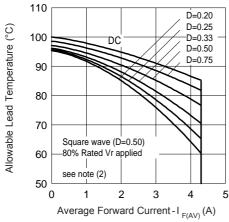


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

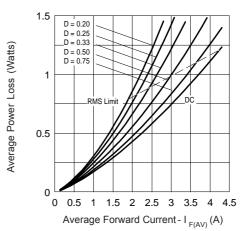
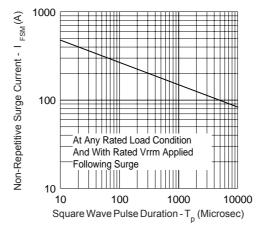
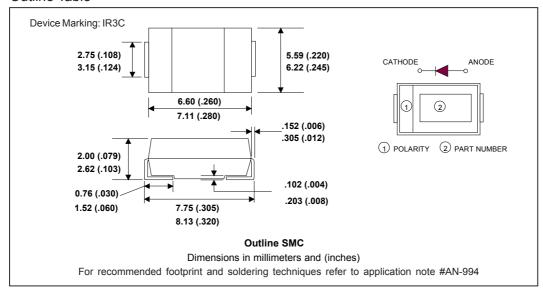
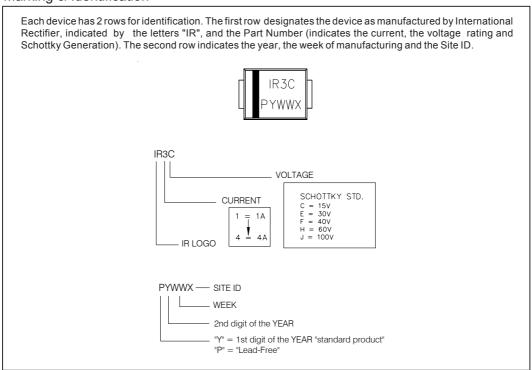


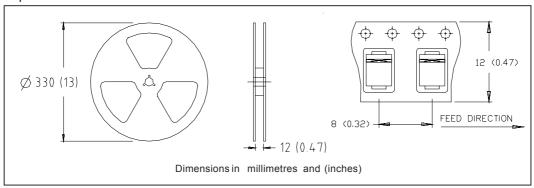
Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

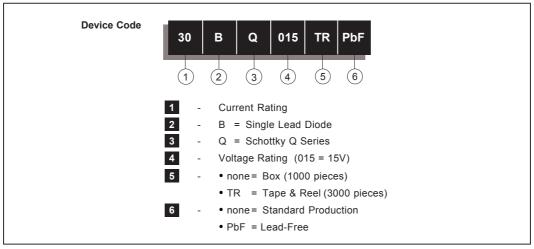

Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV})x$ R_{thJC}; \\ & Pd = Forward Power Loss = $I_{F(AV)}x$ $V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = $V_{R1}x$ $I_R(1-D)$; $I_R @ V_{R1} = 80\%$ rated V_R $I_R(1-D)$; I

Outline Table



Marking & Identification



Bulletin PD-20406 rev. A 05/05

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 05/05