

KitProg host protocol interface

specification

About this document

Scope and purpose

This specification defines the KitProg host protocol interface (KHPI) for communicating with the KitProg controller firmware starting from KitProg3 v1.00. KitProg1 and KitProg2 do not support this protocol.

Abbreviations and definitions

Abbreviations

Abbreviation	Definition
HID	human interface device
12C	inter-integrated circuit
КНРІ	KitProg host protocol interface
SPI	serial peripheral interface
USB	universal serial bus

Table of contents

Abou	t this document	1
Table	e of contents	2
1	Introduction	3
1.1	Version	3
1.2	Hardware Interface	3
2	Protocol Description	4
2.1	Command Status (CMD_STAT)	4
3	KitProg Commands	5
3.1	System Configuration Subsystem (0x80-0x82)	
3.1.1	Get Version (0x80)	
3.1.2	Reset FW (0x81)	
3.1.3	Mode Switch (0x82)	
3.2	User Interface Subsystem (0x83)	
3.2.1	LED Control (0x83)	
3.3	Power Control Subsystem (0x84)	
3.3.1	Set Power (0x84)	7
3.3.2	Get Power (0x84)	7
3.4	Custom SWD Requests (0x85)	8
3.4.1	DAP Acquire (0x85)	8
3.5	I2C/SPI Bridge (0x86-0x89)	9
3.5.1	Set Interface Speed (0x86)	9
3.5.2	Get Interface Speed (0x86)	10
3.5.3	Restart I2C Master (0x87)	10
3.5.4	I2C Write Transaction with Start / Restart (0x88)	
3.5.5	I2C Read Transaction with Start / Restart (0x88)	12
3.5.6	I2C Write Transaction Continuation (No Start or Restart) (0x88)	13
3.5.7	I2C Read Transaction Continuation (No Start or Restart) (0x88)	
3.5.8	SPI Data Transfer (0x89)	
3.6	GPIO Bridge (0x8A – 0x8D)	
3.6.1	Set GPIO Pin Drive Mode (0x8A)	
3.6.2	Set GPIO Pin State (0x8B)	
3.6.3	Read GPIO Pin State (0x8C)	
3.6.4	Read GPIO Pin State Change (0x8D)	
3.7	Info Command (0x90)	
3.7.1	Probe Info/Capabilities (0x90)	
3.8	Set Acquire Parameters (0x91)	
3.8.1	Set Acquire Timeout (0x91)	
3.8.2	Select DAP Handshake Type During DAP Acquire (0x91)	
3.8.3	Set DAP AP (0x91)	
3.8.4	Read Unique ID Record (0x92)	
4	DAPLink Commands	
4.1	Mode Switch (0xA0)	
4.2	Get KitProg Info (0xA1)	
4.3	Reset DAPLink Device (0xA2)	
Revis	ion history	25

1 Introduction

This specification defines the packet structures, and other logical data structures for the host-to-KitProg communication for non-standard CMSIS-DAP operations. The list and description of the available standard commands are available in CMSIS-DAP's official web page (https://arm-software.github.io/CMSIS_5/DAP/html/group__DAP__Commands__gr.html).

1.1 Version

This specification defines the packet structures for KitProg Host Protocol Interface with the following version:

Version Number	Value
Major Version	2
Minor Version	03

1.2 Hardware Interface

This protocol is created for USB endpoints of 64-byte long. It should be revised if used with USB endpoints of a different size.

The endpoint type (HID vs. Bulk) does not matter; this protocol does not have limitations of the CMSIS-DAP endpoint type.

Starting from version 2.00 of KHPI (used in KitProg3 starting from v.2.10), Bulk endpoints are used for the bridge interface.

2 Protocol Description

The communication protocol implies that some commands are available via CMSIS-DAP endpoints and in the same manner and format via other endpoints/interfaces.

This is implementation-specific, but commands can be available through interfaces and endpoints other than those dedicated to CMSIS-DAP. KitProg uses command IDs starting from 0x80 to comply with CMSIS-DAP firmware/interface definition. Commands 0x8E-0x8F and 0x93-0x9F are available for future expendability.

Command	CMSIS-DAP Interface	Bridge Interface
Standard CMSIS-DAP (0x00-0x09)	Yes	No
Reset Target (0x0A)	Yes	Yes ¹
Standard CMSIS-DAP (0x0B-0x7E)	Yes	No
Execute Commands (0x7F)	Yes	Yes ²
System Configuration Subsystem (0x80-0x82)	Yes	Yes
User Interface Subsystem (0x83)	Yes	No
Power Control Subsystem (0x84)	Yes	Yes
DAP Acquire (0x85)	Yes	No
<u>I2C/SPI Bridge (0x86-0x89)</u>	No	Yes
<u>GPIO Bridge (0x8A – 0x8D)</u>	Yes	Yes
Probe Info/Capabilities (0x90)	Yes	Yes
Set Acquire Parameters (0x91)	Yes	No
Read Unique ID Record (0x92)	Yes	No

For KitProg3 in DAPLink mode, vendor-specific command IDs start from 0xA0 to comply with the CMSIS-DAP interface definition of generic DAPLink.

If not stated otherwise, a response packet should be treated as the immediate (delay<10ms) response.

2.1 Command Status (CMD_STAT)

This section does not describe the response that is sent to non-existent command calls; it is 0xFF per CMSIS-DAP documentation. It is returned in Byte 0. The remainder of the packet (if any) does not matter.

CMD_STAT is command status that is included in each command response.

CMD_STAT	
0000 0000 (0x00)	SUCCESS. Command executed successfully.
0000 0001 (0x01)	WAIT. Command accepted; execution is in progress. The host must poll the response until SUCCESS or timeout. All bytes that follow (if any) must be ignored by the host.
1000 0001 (0x81)	FAIL (INVALID_PARAMS). Invalid parameters.
1000 0010 (0x82)	FAIL (OPERATION_FAIL). Operation fails.

¹ Starting from version 2.03 of KHPI, Reset Target command is available on the Bridge interface.

² Starting from version 2.00 of KHPI, Execute multiple commands from a single packet is available on the Bridge interface.

3 KitProg Commands

This section describes the commands that are available in KitProg in either BULK or HID interface modes.

3.1 System Configuration Subsystem (0x80-0x82)

3.1.1 Get Version (0x80)

Used to get FW version + HW ID.

COMMAND (OUT Packet)		
Byte 0	1000 0000 (0x80)	
RESPONSE (RESPONSE (IN Packet)	
Byte 0	1000 0000 (0x80)	
Byte 1	CMD_STAT	
Byte 2	Major version of KitProg FW LSB	
Byte 3	Major version of KitProg FW MSB	
Byte 4	Minor version of KitProg FW LSB	
Byte 5	Minor version of KitProg FW MSB	
Byte 6	Hardware ID LSB	
Byte 7	Hardware ID MSB	
Byte 8	Major version of the KHPI	
Byte 9	Minor version of the KHPI	
Byte 10	Firmware build number LSB	
Byte 11	Firmware build number MSB	

3.1.2 Reset FW (0x81)

Issues a SW reset for the KitProg. There is no IN packet from the KitProg. This command includes USB reenumeration.

COMMAND (OUT Packet)	
Byte 0	1000 0001 (0x81)
RESPONSE (IN Pac	ket)
None	

3.1.3 Mode Switch (0x82)

When KitProg receives this command, it enters the USB bootloader mode or mode switch immediately. It includes USB re-enumeration. There is no IN packet from the KitProg.

A response is issued only if invalid parameters (Byte 1) are received.

COMMAND (OUT Packet)	
Byte 0	1000 0010 (0x82)
Byte1	Desired mode:
	• 0x00 – Bootloader
	• 0x01 – CMSIS-DAP v.2.xx (USB Bulk)
	• 0x02 – CMSIS-DAP v.1.xx (USB HID)
	 0x03 – Arm[®] Mbed[®] DAPLink
_	• 0x04 – CMSIS-DAP v.2.xx Double UART (USB Bulk)
RESPONSE ((IN Packet)
Byte 0	1000 0010 (0x82)

3.2 User Interface Subsystem (0x83)

CMD_STAT

CMD_STAT

3.2.1 LED Control (0x83)

Used to change the LED state.

Byte 1

COMMAND (COMMAND (OUT Packet)	
Byte 0	1000 0011 (0x83)	
Byte 1	UI state:	
	• 0x00 – LED_STATE_READY	
	 0x01 – LED_STATE_PROGRAMMING 	
	0x02 – LED_STATE_SUCCESS	
	• 0x03 – LED_STATE_ERROR	
RESPONSE	(IN Packet)	
Byte 0	1000 0011 (0x83)	

The board that implements KHPI has its own default state(s) of indication (UI) for each mode that it supports. These default modes correspond to the READY state; it is supposed to be set after board startup. The SUCCESS state is intended to indicate that the previous SWD transactions have ended with no errors.

Byte 1

3.3 Power Control Subsystem (0x84)

3.3.1 Set Power (0x84)

Sets the device power supply.

1000 0100 (0x84)
0x10 (set power)
 Device power mode: 0x00 = Power Off voltage regulator. 0x01 = Power On voltage regulator. 0x02 = Power On with voltage for digital potentiometer. In this case, bytes 3-4 define the voltage.
Voltage LSB
Voltage MSB
IN Packet)
1000 0100 (0x84)
CMD_STAT
This byte is defined only if CMD_STAT is returned as fail. 0x80 – Failed to set the desired voltage. 0xFF – Kit doesn't have an onboard digital potentiometer.

3.3.2 Get Power (0x84)

Returns the current device power settings/voltage.

COMMAND (COMMAND (OUT Packet)	
Byte 0	1000 0100 (0x84)	
Byte 1	0x11 (Get Power)	
RESPONSE (IN Packet)	
Byte 0	1000 0100 (0x84)	
Byte 1	CMD_STAT	
Byte 2	Device power supply.	
	0x00 = External (on-board regulator off).	
	None Zero = Powered by KitProg3.	
Byte 3	LSB of Vtarg voltage in the unit of mV.	
Byte 4	MSB of Vtarg voltage in the unit of mV.	
Byte 5	LSB of the digital potentiometer voltage, requested by the host.	
Byte 6	MSB of the digital potentiometer voltage, requested by the host.	
Byte 7	Indicates the status of the digital potentiometer for this HW:	
	• 0 – Not available	
	• 1 –Available on this Kit	

3.4 Custom SWD Requests (0x85)

3.4.1 DAP Acquire (0x85)

Acquires a specified target chip. Acquire is allowed only through the SWD interface; otherwise, byte 0 in the response will contain 0xFF. Power is automatically applied to the target device if using Power Cycle Acquire mode and device is not powered externally. In this mode, the target must not be externally powered; if not, the attempt to acquire will fail. If using custom acquisition, Byte 4 should be defined with exact number of commands in the acquire sequence. When auto target detection is used, the target family will be retrieved from the DAP ROM table.

•	JT Packet)		
Byte 0	1000 0101 (0x85)	
Byte 1	Defines Tar	get:	
	 0x00 – PSoC[™] 4 		
	 0x01 – PSoC[™] 5LP 		
	• 0x0	2 – PSoC™ 6 BLE	
	• 0x0	3 – T2G and XMC7000	
	• 0x0	4 – AIROC™	
	• 0x0	5 – PSoC™ 3	
	• 0xF	E – Custom acquisition sequence	
	• 0xF	F – Target auto detection	
Byte 2	Acquire Mo		
		0 – Reset	
		1 – Power Cycle	
Byte 3	Number of	acquire attempts (until succeeds)	
Byte 4	Only for cus	stom acquisition sequence: number o	f commands in custom sequence
	programmi <u>Interface v</u> 5	ng specifications. For information on Architecture Specification.	r devices should be taken from device SWD Transfer Requests see <u>ARM Debug</u>
	Write opera	· ·	
	write opera	ition:	1
	Byte	Field	Example
			Example 0x81 (ABORT Write)
	Byte	Field SWD Transfer Request Data (LSb	
	Byte 0	Field SWD Transfer Request Data (LSb bit sent first)	0x81 (ABORT Write)
	Byte 0	FieldSWD Transfer Request Data (LSb bit sent first)Address of register to write to (LSB sent first)	0x81 (ABORT Write) 0x0000001E (ORUNERRCLR=1, WDERRCLR=1, STKERRCLR=1, STKCMPCLR=1,
	Byte 0 Byte 1-4	FieldSWD Transfer Request Data (LSb bit sent first)Address of register to write to (LSB sent first)	0x81 (ABORT Write) 0x0000001E (ORUNERRCLR=1, WDERRCLR=1, STKERRCLR=1, STKCMPCLR=1,

RESPONSE (IN Packet)

Byte 0	1000 0101 (0x85)
Byte 1	CMD_STAT
Byte 2	Acquisition Result:
	 0x00 – Device was not acquired
	0x01 – Device was acquired

3.5 I2C/SPI Bridge (0x86-0x89)

3.5.1 Set Interface Speed (0x86)

Sets the current Interface data rate.

COMMAND (C	DUT Packet)
Byte 0	1000 0110 (0x86)
Byte 1	Request type:
	• 0x00 – Set speed
Byte 2	Interface type:
	• 0x00 – I2C interface
	• 0x01 – SPI interface
Byte 3-6	Interface desired speed (Little-endian).
	For I2C:
	• 0x0000000 = 50 kbps
	• 0x00000001 = 100 kbps
	• 0x0000002 = 400 kbps
	• 0x0000003 = 1 Mbps
	For SPI, this word sets the SPI frequency. If the bit rate is not achievable, the next smaller achievable value is set. The actual value that was set is returned in the response packet.
Byte 7	For SPI only, this byte means:
	• Bit 0: Bit Order (MSB=0, LSB=1)
	• Bit 1-2: SPI Mode 0-3
RESPONSE (I	N Packet)
Byte 0	1000 0110 (0x86)
Byte 1	CMD_STAT

Byte 2-5

For SPI only: The actual bit rate that is set

3.5.2 Get Interface Speed (0x86)

Gets the current Interface data rate.

COMMAND (C)UT Packet)
Byte 0	1000 0110 (0x86)
Byte 1	Request type:
	• 0x01 – Get speed
Byte 2	Interface type:
	• 0x00 – I2C interface
	• 0x01 – SPI interface
RESPONSE (I	N Packet)
Byte 0	1000 0110 (0x86)
Byte 1	CMD_STAT
Byte 2-5	Interface current speed (Little-endian).
	For I2C:
	• 0x0000000 = 50 kbps
	• 0x0000001 = 100 kbps
	• 0x0000002 = 400 kbps
	• 0x0000003 = 1 Mbps
	For SPI: The actual bit rate value.
Byte 6	For SPI only, this byte means:
	• Bit 0: Bit Order (MSB=0, LSB=1)
	• Bit 1-2: SPI Mode 0-3

3.5.3 Restart I2C Master (0x87)

Disables the I2C hardware, waits for the bus to be released, and re-enables the I2C hardware.

COMMAND (OUT Packet)	
Byte 0	1000 0111 (0x87)
RESPONSE (IN Packet)	
Byte 0	1000 0111 (0x87)
Byte 1	CMD_STAT

3.5.4 I2C Write Transaction with Start / Restart (0x88)

The bridge generates a Start/Restart condition and sends an I2C address byte containing the 7-bit I2C address and a cleared R/W bit. If the address byte is acknowledged, the bridge sends each byte onto the bus and waits for acknowledgement. If any byte is NACKed, the bridge stops sending data onto the bus.

If the 'S' bit in Byte 1 of the COMMAND (OUT Packet) is set, the bridge generates a Stop condition at the end of the transaction. Otherwise, the bridge does not generate a Stop condition, thereby allowing the execution of a following command with a restart or with a continuation of the current transaction.

The command can respond with the WAIT response in CMD_STAT. If the I2C slave stretches the bus and the transaction takes long, the response with the WAIT status will be issued every second to indicate that the bridge is alive. In such cases, no command can be accepted by the bridge until the current operation is completed. The only exception is the Restart I2C Master (see Section **0**) command that can be used to interrupt unfinished write transactions.

COMMAND (O	COMMAND (OUT Packet)	
Byte 0	1000 1000 (0x88)	
Byte 1	0001 xxSR	
	R indicates whether to generate a Start or Restart condition.	
	• 0 = Generate a Start condition.	
	• 1 = Generate a Restart condition.	
	S indicates whether to generate a Stop condition.	
	• 0 = Do not generate a Stop condition.	
	• 1 = Generate a Stop condition.	
Byte 2	Length (number of bytes to write). Must be less than or equal to 60.	
_	Otherwise, only 60 bytes are processed in FW.	
Byte 3	7-bit I2C slave address. The MSB of this byte must be cleared.	
Bytes 4-63	Data to send. Byte 2 of the packet specifies the number of bytes that are valid.	
RESPONSE (IN	l Packet)	
Byte 0	1000 1000 (0x88)	
Byte 1	CMD_STAT	
Byte 2	ACK indicator for the I2C slave address byte:	
	• 0x00 = NACK	
	• 0x01 = ACK	
	If this byte indicates a NACK, all following data is invalid.	
Bytes 3-62	ACK indicator for every byte written:	
	• 0x00 = NACK	
	• 0x01 = ACK	
	Data that occurs after the first NACK indication is invalid.	

3.5.5 I2C Read Transaction with Start / Restart (0x88)

The bridge generates a Start/Restart condition and sends an I2C address byte containing the 7-bit I2C address and a set R/W bit. If the address byte is acknowledged, the bridge reads each byte on the bus and acknowledges.

If the S bit in Byte 0 of the COMMAND (OUT Packet) is set, the bridge NACKs the last byte (though this byte is successfully received) and generates a Stop condition at the end of the transaction. Otherwise, the bridge ACKs the last byte and does not generate a Stop condition, thereby allowing execution of a following command with a Restart or with a continuation of the current transaction.

The command can respond with a WAIT response in CMD_STAT. If the I2C slave stretches the bus and the transaction takes long, the response with the WAIT status will be issued every second to indicate that the bridge is alive. In such cases, no command can be accepted by the bridge until the current operation is completed. The only exception is the Restart I2C Master (see Section **0**) command that can be used to interrupt unfinished read transactions.

COMMAND (OUT Packet)	
Byte 0	1000 1000 (0x88)
Byte 1	0010 xxSR
	R indicates whether to generate a Start or Restart condition.
	• 0 = Generate a Start condition.
	• 1 = Generate a Restart condition.
	S indicates whether to generate a Stop condition.
	• 0 = Do not generate a Stop condition.
	• 1 = Generate a Stop condition.
Byte 2	Length (number of bytes to read). Must be less than or equal to 61.
	Otherwise, only 61 bytes are processed in FW.
Byte 3	7-bit I2C slave address. The MSB of this byte must be cleared.
RESPONSE (IN	Packet)
Byte 0	1000 1000 (0x88)
Byte 1	CMD_STAT
Byte 2	ACK indicator for the I2C slave address byte:
	• 0x00 = NACK
	• 0x01 = ACK
	If this byte indicates a NACK, all following data is invalid.
Bytes 3-63	Received data bytes in the chronological order of reception from the slave.

3.5.6 I2C Write Transaction Continuation (No Start or Restart) (0x88)

Continues an existing I2C Write transaction. The bridge sends each byte onto the bus and waits for acknowledgment. If any byte is NACKed, the bridge discontinues sending onto the bus.

If the 'S' bit in Byte 1 of the COMMAND (OUT Packet) is set, the bridge generates a Stop condition at the end of the transaction. Otherwise, the bridge does not generate a Stop condition, thereby allowing the execution of a following command with a Restart or with the continuation of the current transaction. The behavior is undefined when this command is sent when an I2C Write transaction is not active.

The command can respond with the WAIT response in CMD_STAT. If the I2C slave stretches the bus and the transaction takes long, the response with the WAIT status will be issued every second to indicate that the bridge is alive. In such cases, no command can be accepted by the bridge until the current operation is completed. The only exception is the Restart I2C Master (see Section **0**) command that can be used to interrupt unfinished write transactions.

COMMAND (OUT Packet)	
Byte 0	1000 1000 (0x88)
Byte 1	0011 Sxxx
	S indicates whether to generate a Stop condition.
	• 0 = Do not generate a Stop condition.
	• 1 = Generate a Stop condition.
Byte 2	Length (number of bytes to write). Must be less than or equal to 61.
	Otherwise, only 61 bytes are processed in FW.
Bytes 3-63	Data to send. Byte 2 specifies the number of bytes that are valid.
RESPONSE (IN	Packet)
Byte 0	1000 1000 (0x88)
Byte 1	CMD_STAT
Bytes 2-62	ACK indicator for each byte written:
	• 0x00 = NACK
	• 0x01 = ACK
	Data that occurs after the first NACK indicator is invalid.

3.5.7 I2C Read Transaction Continuation (No Start or Restart) (0x88)

Continues the existing I2C Read transaction. The bridge reads each byte on the bus and acknowledges.

If the 'S' bit in Byte 1 of the COMMAND (OUT Packet) is set, the bridge NACKs the last byte (although this byte is successfully received) and generates a Stop condition at the end of the transaction. Otherwise, the bridge ACKs the last byte and does not generate a Stop condition, thereby allowing the execution of a following command with a Restart or with a continuation of the current transaction. The behavior is undefined when this command is sent when an I2C read transaction is not active.

The command can respond with the WAIT response in CMD_STAT. If the I2C slave stretches the bus and the transaction takes long, the response with the WAIT status will be issued every second to indicate that the bridge is alive. In such cases, no command can be accepted by the bridge until the current operation is completed. The only exception is the Restart I2C Master (see Section **0**) command that can be used to interrupt unfinished read transactions.

COMMAND (OUT Packet)	
Byte 0	1000 1000 (0x88)
Byte 1	0100 Sxxx
	S indicates whether to generate a Stop condition.
	• 0 = Do not generate a Stop condition.
	• 1 = Generate a Stop condition.
Byte 2	Length (number of bytes to read). Must be less or equal to 62.
	Otherwise, only 62 bytes are processed in FW.
RESPONSE (IN Packet)
Byte 0	1000 1000 (0x88)
Byte 1	CMD_STAT

3.5.8 SPI Data Transfer (0x89)

Transfers data via SPI. The bridge performs data exchange between the PC and the target application. Before data exchanging, the bridge sets the proper SS (Slave select) from HIGH to LOW level and after completing from LOW to HIGH.

Received data bytes in the chronological order of reception from the slave

COMMAND (MAND (OUT Packet)	
Byte 0	1000 1001 (0x89)	
Byte 1	Length (number of bytes to write/read). Must be less than or equal to 60.	
	Otherwise, only 60 bytes are processed in FW.	
Byte 2	SS to use:	
	• 0x01 – SS#0	
	• 0x02 – SS#1	
	• 0x04 – SS#2	
Byte 3	Control byte:	
	• 0x00 = No Start/Stop for SS	
	 0x02 = Start condition – SS transition HIGH-> LOW 	
	 0x08 = Stop condition – SS transition LOW-> HIGH 	

Bytes 2-63

Bytes 4-63	Data
RESPONSE (IN Packet)	
Byte 0	1000 1001 (0x89)
Byte 1	CMD_STAT
Byte 2-61	Received data bytes in the chronological order of reception from the slave.

3.6 GPIO Bridge (0x8A – 0x8D)

Byte 1 in all of the requests specifies the GPIO pin on the KitProg3 device, which is connected to the pin on target device. Available pins are described in the KitProg3 User Guide. If an invalid GPIO pin reference is provided or if a pin mode cannot be set, Byte 1 in response returns FAIL.

3.6.1 Set GPIO Pin Drive Mode (0x8A)

Sets one of the GPIO pins with the chosen drive mode, and returns whether the drive mode of GPIO pin has been set.

COMMAND ((OUT Packet)	
Byte 0	1000 1010 (0x8A)	
Byte 1	0bxxxx yyyy	
	• XXXX – port number	
	• YYYY – pin number	
Byte 2	Desired Pin Drive Mode :	
	• 0x00 - High Impedance Digital	
	• 0x01 - Resistive Pull Up	
	• 0x02 - Resistive Pull Down	
	• 0x03 - Open Drain, Drives Low	
	• 0x04 - Open Drain, Drives High	
	• 0x05 - Strong Drive	
	• 0x06 - Resistive Pull Up & Down	
RESPONSE (IN Packet)	
Byte 0	1000 1010 (0x8A)	
Byte 1	CMD_STAT	

3.6.2 Set GPIO Pin State (0x8B)

Sets GPIO pin state – LOW or HIGH, and returns status whether state has been set. Trying to set LOW or HIGH on pin in High Impedance Digital (HiZ) mode will result in INVALID_PARAMS error.

COMMAND (OUT P	Packet)			
Byte 0 1000 1011 (0x8B)				
Byte 1	0bXXXX YYYY			
	• XXXX – port number			
	• YYYY – pin number			

KitProg host protocol interface specification

KitProg Commands

Byte 2	Pin State to set:
	• 0 – Low (0)
	• Not 0 – High (1)
RESPONSE (I	IN Packet)
Byte 0	1000 1011 (0x8B)
Byte 1	CMD_STAT

3.6.3 Read GPIO Pin State (0x8C)

Returns the current LOW or HIGHT state of the GPIO pin.

COMMAND (OUT Packet)
Byte 0	1000 1100 (0x8C)
Byte 1	0bXXXX YYYY
	• XXXX – Port number
	• YYYY – Pin number
RESPONSE (IN Packet)
Byte 0	1000 1100 (0x8C)
Byte 1	CMD_STAT

3.6.4 Read GPIO Pin State Change (0x8D)

Current pin state on the chosen GPIO pin.

Returns whether the state of GPIO pin has changed.

COMMAND (OUT Packet)				
Byte 0	1000 1101 (0x8D)				
Byte 1	0bxxxx yyyy				
	• XXXX – Port number				
	• YYYY – Pin number				
RESPONSE (IN Packet)				
Byte 0	1000 1101 (0x8D)				
Byte 1	CMD_STAT				
Byte 2	0x00 – State is unchanged				
	0x01 – Transition from LOW to HIGH occurred.				
	0x02 – Transition from HIGH to LOW occurred.				

Byte 2

3.7 Info Command (0x90)

3.7.1 Probe Info/Capabilities (0x90)

COMMAND (OUT Packet)										
Byte 0	1001 0000 (0×90)										
RESPONSE (IN Packet)										
Byte 0	1001 0000 (0x90)										
Byte 1	CMD_STAT										
Byte 2	Major inte	erfaces suppo	orted, bit ass	ignments:							
	7	6	5	4		3	2	1	0		
	Res	GPIO	VMEAS	PCTRL		DAPB	DAPH	SPI	I2C		
	D. D. Pi	PI – Specifie APH – Specifi APB – Specifie CTRL – Specifie MEAS – Specifie	es whether C ies whether fies whether	PI bridging i CMSIS-DAP 1 CMSIS-DAP 2 power on/o	s suppo x mode x mode ff is supp asureme	rted is support is support ported ent is supp	ed (USB Bu				
Byte 3	GPIO – Specifies whether GPIO bridging is supported UART(s) and LED(s) supported, bit assignments:										
,	7	6	5	4	3	2	1	0			
	UARTS	UARTS					LEDS				
	UARTS – Quantity of UARTs supported LEDS – Number of status LEDs										
Byte 4	I2C clocks	s supported, l	pit assignme	nts:	1						
	7	6	5	4	3	2	1	0			
	Reserved				M1	K400	K100	K	50		
	 K50 – Specifies whether 50 kbps is supported K100 – Specifies whether 100 kbps is supported K400 – Specifies whether 400 kbps is supported M1 – Specifies whether 1 Mbps is supported 										
Byte 5-8	Minimum	SPI speed su	pported, in I	Iz. Little-en	dian.						
Byte 9-12		SPI speed su	••								
Byte 13		select suppor	••								
, -	7	6	5	4	3	2	1	0			
	SS7	SS6	SS5	SS4	SS3	SS2	SS1	S	S0		
		itmask for SS									

KitProg host protocol interface specification

KitProg Commands

Byte 14	Voltage	Voltages supported by the kit, bit assignments:									
	7	6	5	4	3	2	1	0			
	Reserv	ed			5V	3_3V	2_5V	1_8V			
	1_8V – Specifies whether 1.8V is supported										
	2_5V – Specifies whether 2.5V is supported										
		3_3V – Spec	ifies wheth	er 3.3V is su	pported						
		5V – Specifie	es whether	5V is suppor	rted						

3.8 Set Acquire Parameters (0x91)

This command is available started from 1.10 version of protocol.

3.8.1 Set Acquire Timeout (0x91)

Set the acquisition timeout value during the DAP Acquire (0x85) command execution. If Byte 2 is 0x00, default values are set:

- PSoC[™] 4: Reset 2.5 ms, Power Cycle 5 ms
- PSoC[™] 5LP: Reset 2.5 ms, Power Cycle 5 ms
- PSoC[™] 6A, T2G, AIROC[™], XMC7000 Reset 1000 ms, Power Cycle 1000 ms

COMMAND	(OUT Packet)
Byte 0	1001 0001 (0x91)
Byte 1	0x00 (set acquire timeout)
Byte 2	Timeout value to set in seconds; must be equal or less than 30.
RESPONSE	(IN Packet)
Byte 0	1001 0001 (0x91)
Byte 1	CMD_STAT

3.8.2 Select DAP Handshake Type During DAP Acquire (0x91)

The type of DAP handshake which will be used to select the debug protocol during the process. DAP Acquire request can be selected among the following:

- Line reset/TLR
- <Initial_Protocol> to <Final_Protocol>
- Dormant to <Final_Protocol>
- <Initial_Protocol> to Dormant to <Final_Protocol>

The selected sequence will be used in DAP Acquire requests until KitProg is powered on. If Byte 2 is 0x00, default values are set:

- For PSoC[™] 4, PSoC 5LP the SWD Line reset will be used
- For PSoC[™] 6A, T2G, AIROC[™], XMC7000 the JTAG to SWD will be used

COMMAND	(OUT Packet)
Byte 0	1001 0001 (0x91)
Byte 1	0x01 (select DAP handshake type)
Byte 2	Defines handshake type:
	 0x00 – System default (SWD Line reset for PSoC[™] 4, JTAG to SWD otherwise)
	0x01 – SWD Line reset
	• 0x02 – JTAG to SWD
	• 0x03 – Dormant to SWD
	• 0x04 – JTAG to Dormant to SWD
RESPONSE	(IN Packet)
Byte 0	1001 0001 (0x91)
Byte 1	CMD_STAT

3.8.3 Set DAP AP (0x91)

Select active DAP MEM access port through which the test mode bit will be set during acquisition.

COMMAND	(OUT Packet)					
Byte 0	1001 0001 (0x91)					
Byte 1	0x02 (set DAP AP)					
Byte 2	DAP AP number					
RESPONSE	(IN Packet)					
Byte 0	1001 0001 (0x91)					
Byte 1	CMD_STAT					

3.8.4 Read Unique ID Record (0x92)

Provides information about device stored in KitProg3. Byte 2 can be 0xFF in cases when Unique ID Record is corrupted or blank. Byte 3-62 are defined only if Byte 2 is 0x00.

COMMAND (OUT Packet)										
Byte 0	1001 0010 (0x92)										
RESPONSE (IN Packet)										
Byte 0	1001 0010 (0x92)	1001 0010 (0x92)									
Byte 1	CMD_STAT										
Byte 2	Indicator whethe	er Unique ID Reco	rd is valid:								
	• 0x00 – Va	lid									
	• 0xFF – Inv	valid									
Byte 3-6	mbed board ID in	ASCII encoding									
Byte 7-8	Unique ID of devi	ice									
Byte 9	Programming int	erfaces and prog	ramming opt	ions, bit ass	ignments:						
-	7 6	5	4	3	2	1	0				
	Reserved	SWO	PPPC	PMPR	JTAG	SWD	DAPLink				
	DAPLink -	– is DAPLink supp	oorted								
	SWD – is o	SWD – is communicational interface supported									
	JTAG – is	JTAG – is communicational interface supported									
	PMPR – is	s programming m	node reset su	pported							
	PPPC – is	programming m	ode power cy	cle support/	ed						
	SWO – is s	Single Wire Outp	ut supported								
Duto 10			features hit a	assignments	:						
Byte 10	Supported bridgi	ing and bridging	icului co, bit t	0							
Byte 10	7 6	ing and bridging	4	3	2	1	0				
Byte 10				-	2 UARTHW	1 UARTs	0				
Byte 10	7 6 GPIO SPI	5	4 12C	3			0				
3yte 10	7 6 GPIO SPI UARTs – c	5 I2C_PU	4 12C s	3 UART_RTS	UARTHW		0				
3yte 10	7 6 GPIO SPI UARTs – C UARTHW	5 I2C_PU quantity of UART	4 12C s W flow contro	3 UART_RTS	UARTHW		0				
3yte 10	7 6 GPIO SPI UARTs – c UARTHW UART_RT	5 I2C_PU quantity of UART - is USB-UART H	4 12C s W flow contro 5 behavior us	3 UART_RTS	UARTHW		0				
3yte 10	7 6 GPIO SPI UARTs – C UARTHW UART_RT I2C – is I2	5 I2C_PU quantity of UART - is USB-UART H S – is special RTS	4 12C s W flow contro S behavior us orted	3 UART_RTS	UARTHW		0				
3yte 10	7 6 GPIO SPI UARTs - c UARTHW UART_RT I2C - is I2 I2C_PU -	5 I2C_PU quantity of UART – is USB-UART H S – is special RTS C bridging suppo	4 12C s W flow contro 5 behavior us orted ported	3 UART_RTS	UARTHW		0				
3yte 10	7 6 GPIO SPI UARTS - C UARTHW UART_RT I2C - is I2 I2C_PU - SPI - is SI	5 I2C_PU quantity of UART - is USB-UART H S – is special RTS C bridging suppo is I2C pullup sup	4 12C s W flow contro 5 behavior us orted ported orted	3 UART_RTS	UARTHW		0				
	7 6 GPIO SPI UARTs - C UARTHW UART_RT I2C - is I2 I2C_PU - SPI - is SI GPIO - is	5 I2C_PU quantity of UART - is USB-UART H S – is special RTS C bridging suppo is I2C pullup sup PI bridging suppo GPIO bridging su	4 12C s W flow contro 5 behavior us orted ported ported pported	3 UART_RTS ol supported ed	UARTHW		0				
	7 6 GPIO SPI UARTS - C UARTHW UART_RT I2C - is I2 I2C_PU - SPI - is SI	5 I2C_PU quantity of UART - is USB-UART H S – is special RTS C bridging suppo is I2C pullup sup PI bridging suppo GPIO bridging su	4 12C s W flow contro 5 behavior us orted ported ported pported	3 UART_RTS ol supported ed	UARTHW		0				
3yte 10 3yte 11	76GPIOSPIUARTs - CUARTHWUART_RTI2C - is I2I2C_PU -SPI - is SIGPIO - isLEDs and mode s	5 I2C_PU quantity of UART - is USB-UART H S – is special RTS C bridging suppo is I2C pullup sup PI bridging suppo GPIO bridging suppo	4 12C s W flow contro behavior us orted ported orted ported ported eters for KitPr	3 UART_RTS ol supported ed og3, bit assig	UARTHW gnments:	UARTs					
	76GPIOSPIUARTs - CUARTHWUART_RTI2C - is I2I2C_PU -SPI - is SIGPIO - isLEDs and mode s76Reserved	5 I2C_PU quantity of UART - is USB-UART H S – is special RTS C bridging suppo is I2C pullup sup PI bridging suppo GPIO bridging suppo	4 12C s W flow contro behavior us orted ported orted pported eters for KitPr 4	3 UART_RTS ol supported ed og3, bit assis 3 MODE	UARTHW gnments:	UARTs 1					

KitProg host protocol interface specification

Byte 12	Target type	e definition,	bit assignm	nents:						
	7	6	5	4	3	2	1	0		
	Secure Target-Type									
	Target-Type									
	• x000000 – PSoC [™] 4									
		• x00000	01 – PSoC™	'5LP						
		• x00000	10 – PSoC™	'6						
		• x00000	11 – PSoC™	' 6A-2M						
		• x00001	.00 – PSoC™	'6A-512						
		• x00001	.01 – PSoC™	'6A-256K						
		• x00001	10 – PMG1							
		• x00001	.11 – T2G							
		• x00010	00 – PSoC™	' 4500						
		• x00010	01 – XMC70	00						
			10 - AIROC [™]							
	Sec	cure – is targ								
Byte 13			nd FRAM su	innort bit a	ssignmente	;•				
<i>Dytc</i> 10	7	6	5	4	3	2	1	0		
	WB				FRAM			-		
	FRA	AM – type of	FRAM:							
	 xxxx000 – not supported 									
		 xxxx001 - CY15B104QSN 								
			10 - FM24V1	-						
			11 - FM25V1							
	WB		onnectivity		ported:					
			xx – not sup	-	portour					
			xx - LBEE5k	•						
			xx - CYW430							
	• 00011xxx - CYW4343W									
	• 00100xxx - CYW43438									
	• 00101xxx - CYBLE-416045									
	• 00110xxx - CYBLE-022001									
		• 00111xxx - Various								
			xx - CYSBS							
			xx – Interna							
		• 01010×	xx - CYW208	819						
		• 01011×	xx – CYW94	373W						
Byte 14	SMIF and Q	SPI, bit assi	ignments:							
	7	6	5	4	3	2	1	0		
	Reserved				SMIF					
			emory supp							
	• xxx	00000 – not	supported							
	• xxx	00001 - S25	FL512S							
	• xxx	00010 - S25	FL064L							

KitProg host protocol interface specification

KitProg Commands

	• xxx00011 - S25FS512S									
	• xxx00100 - S25HL512T									
	• xxx00101 - S25FL256S									
Byte 15	Boards features, bit assignments:									
	7 6 5 4 3 2 1 0									
	CAPSENSE [™] EHA EHD EP VTAR PWR VM VC									
	VC – is voltage control supported									
	VM – is voltage detection supported									
	PWR – is power on/off supported									
	VTAR – is VTARG output disabled by default									
	EP – is External Power supported									
	EHD – is Diligent Pmod extension headers supported									
	EHA – is Arduino compatible headers supported									
	CAPSENSE™ – is CAPSENSE™ supported									
Byte 16	Reserved for Future Use									
Byte 17-48	Full Device Name in ASCII encoding									
Byte 49	Device Hardware ID									
Byte 50-53	Target Silicon ID									
Byte 54	Minor Version of Unique ID Record									
Byte 55	Major Version of Unique ID Record									
Byte 56-61	Reserved for Future Use									
Byte 62	Checksum of Unique ID Record									

DAPLink Commands

4 DAPLink Commands

This section describes the custom commands that are available in DAPLink interface modes.

4.1 Mode Switch (0xA0)

When the DAPLink receives this command, it enters the USB bootloader mode or mode switch immediately. It includes USB re-enumeration. There is no IN packet from the DAPLink. Response shall be issued only if invalid parameters (Byte 1) are received.

COMMAND (OUT Packet)		
Byte 0	1010 0000 (0xA0)	
Byte1	Desired mode:	
	• 0x00 – Bootloader	
	• 0x01 – KitProg3 CMSIS-DAP v.2.xx (USB Bulk)	
	• 0x02 – KitProg3 CMSIS-DAP v.1.xx (USB HID)	
	• 0x03 - KitProg3 CMSIS-DAP v.2.xx with two UARTs	
RESPONSE	(IN Packet)	

Byte 0	1010 0000 (0xA0)
Byte 1	CMD_STAT

If KitProg3 CMSIS-DAP v.2.xx with two UARTs mode is not supported, the kit switches to KitProg3 CMSIS-DAP v.2.xx (USB Bulk).

4.2 Get KitProg Info (0xA1)

Used to get KitProg FW version + HW ID.

COMMAND (OUT Packet)		
Byte 0	1010 0001 (0xA1)	
RESPONSE (IN Packet)		
Byte 0	1010 0001 (0xA1)	
Byte 1	Major version of KitProg FW	
Byte 2	Minor version of KitProg FW	
Byte 3	Firmware build number LSB	
Byte 4	Firmware build number MSB	
Byte 5	Hardware ID	

4.3 Reset DAPLink Device (0xA2)

Used to issue a software reset for the DAPLink device. No response from the device is expected.

COMMAND (OUT Packet)			
Byte 0	1010 0010 (0xA2)		
RESPONSE (IN	Packet)		
None			

Revision history

Rev.	Date	Description of Change
*K	3/23/21	Document released publicly.
		Added "Reset DAPLink Device" vendor command
		Fixed table of command availability per interface
		Updated table command availability per interfaces with GPIO Bridge commands
		Updated section numbering
		Updated Info Command (0x90) with GPIO availability
		Added GPIO Bridge Commands
		Protocol version changed to 2.02
*L	4/15/21	Updated description of GPIO Bridge Commands.
*M	8/10/21	Added description of Read Unique ID Record (0x92) command
		Updated DAP Acquire (0x85) command
		Update available range for vendor commands
*N	5/2/22	Protocol version changed to 2.03
		Added note on setting state on in HiZ for Set GPIO Pin State (0x8B)
		Updated Read Unique ID Record (0x92) with new supported targets, BT and QSPI modules
		Updated DAP Acquire (0x85), Set Acquire Timeout (0x91) and Read Unique ID Record (0x92) with AIROC [™] and XMC7000 information
		Formatted all tables
		Added Reset Target command (0x0A) to the Bridge interface.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE

Edition 2022-05-02 Published by Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Contact: cypress.com/support

Document reference 002-23370 Rev. *N The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.