
AURIX™ TC2xx Microcontroller Training

V1.0.0

OneEye_UART_Mux_1

for KIT_AURIX_TC275_LK
Data multiplexer over UART using OneEye

Please read the Important Notice and Warnings at the end of this document

Scope of work

Demonstrate how to implement the data multiplexer over the UART

(USB) interface

After configuring the OneEye UART interface, a data multiplexer is created.

OneEye is used to visualize the signal values.

Introduction

› OneEye is a GUI that enables the creation of interactive Graphical User Interface. Graphical

elements can be drag from a toolbox and drop onto the GUI. The behavior of the created

GUI can be customized. Different communication interfaces like UART, Ethernet, CAN, DAS

can be used to interact with the embedded system

› SyncProtocol / ProtocolBB is a synchronous protocol that enables data streaming between

the target microcontroller and OneEye. It enables to open multiple communication channels,

provide packet acknowledge and packet checksum. Data are transported within a message

with a message ID and a message payload. See the OneEye help for more information.

› Note: It is recommended to go through some of the basic tutorials listed in the help

embedded in OneEye (Menu: Help -> OneEye help). This enables a quicker ramp-up in the

OneEye concept and ensures a nice journey with OneEye

Hardware setup

This code example has been developed for the

board KIT_AURIX_TC275_LITE.

The board should be connected to the PC

through the USB port 1

1

Configuration overview

In this configuration two C struct are used to exchange data over the COM port between the microcontroller

and OneEye.

In OneEye, two signals bb.in and bb.out are used to connect the COM port data stream to the BB protocol.

The BB protocol is configured to open a channel reserved for the data multiplexer. This channel connects to

the Mux-Demux widget using the mux.in and mux.out signals. The Mux-Demux widget connects to a slider

with the command.max signal and a Graph with the status.signalA and status.signalB signals.

OneEye Micro-controller
C

O
M

 p
o

rt

C
O

M
 p

o
rt

[bb.in]

[bb.out]

BB
Protocol

Data
Multiplexer

channel

Mux-
Demux
Widget

[mux.out]

[mux.in]

BB
Protocol

Data
Multiplexer

channel

C
struct

BB protocol

Slider

Graph

[command.max]

[status.signalA]

[status.signalB]

Implementation - AURIX

Enabling the OneEye library

The OneEye library must be enabled by adding the following line to Ifx_Cfg.h:

#define IFX_OE_AL_USE_AURIX_ILLD

Configuring the data multiplexer

A OneEye BB protocol client (Ifx_Oe_SyncProtocol_Client) is an object that enables raw massage data

transmission using the BB protocol (Ifx_Oe_SyncProtocol).

The OneEye BB protocol client is initialized with initDataMultiplexer() / Ifx_Oe_SyncProtocol_addClient().

The ifx_oe_syncprotocol.h file can be found in the Libraries\OneEye directory.

Configuring the UART communication

The UART communication is initialized with the function initUart(), which also initializes the BB protocol.

In the infinite while loop, the function processUart() executes the SyncProtocol.

Implementation - AURIX

Receiving data from OneEye

Receiving data from OneEye is done within processDataMultiplexer(). The client is periodically checked for

incoming messages using the Ifx_Oe_SyncProtocol_isMessageAvailable() passing a pointer to the BB client as

parameter.

To decode the received data, a message buffer must be acquired first with the function

Ifx_Oe_SyncProtocol_getReadMessageBuffer(). The function takes a pointer to the BB client as input parameter,

and pointers to a message ID, a message payload buffer and a message length as output parameters. Then the

message payload pointer is cast to the C struct type that defines the data. Finally the data are readout from the C

struct and the message is released using Ifx_Oe_SyncProtocol_releaseReadMessageBuffer().

Sending data to OneEye

Sending data to OneEye is done within processDataMultiplexer(). Data are send periodically (100ms). The timing is

ensured using the Ifx_Oe_Time_isDeadLine() and Ifx_Oe_Time_add() functions.

To send data, a message buffer must be acquired first with Ifx_Oe_SyncProtocol_setSendMessageBuffer(). The

function takes a pointer to the BB client, the message ID and the message size parameters. Then the message

payload is cast to the C struct type containing the data and the C struct is filled with data. Finally, the message is send

using Ifx_Oe_SyncProtocol_sendMessage() passing the message pointer as parameter.

Note: it is important to ensure the struct member offset and size to enable proper encoding / decoding by OneEye.

This memory mapping is specific to the CPU data alignment and compiler. For Hightec compiler, the

__attribute__ ((__packed__)) is added to the DataStreaming_Data_0 and DataStreaming_Data_1 struct definition.

Implementation - AURIX

Configuring the signal generator

A signal generator is used to provide the user with some value to read / write. The signal generator does

nothing more than incrementing two signals, signalA and signalB, stored in the structure g_signalGenerator

up to a maximum value before resetting them.

The initialization of the signal generator is done with initSignalGenerator().

Running the signal generator

The signal generator is executed in the background loop every 1ms with processSignalGenerator(). To

ensure the timing, a deadline variable is periodically updated with Ifx_Oe_Time_add() to obtain the 1ms

period.

› After code compilation, flash the device using the Flash button to ensure that the

program is running on the device

› For this training, the OneEye application is required for visualizing the values. OneEye can

be opened inside the AURIX™ Development Studio using the following icon:

Run and Test

› Clicking the OneEye

icon automatically

opens the OneEye

configuration for the

active project. If no

configuration exists, it

is created by AURIX™

Development Studio

1

1

Implementation - OneEye

In this training, the OneEye configuration is provided inside the Libraries folder. The following steps are

needed to configure the oscilloscope from a brand-new configuration.

Setup OneEye for editing

Select the OneEye menu “Options -> Edit mode” (if not already checked) to enable the edit mode.

Select the OneEye menu “View -> Browser box”, “View -> Property box” , “View -> Tool box” (if not

already checked) to display the browser, property box, and tool box. Note that the box can be moved around.

Implementation - OneEye

Removing the default DAS interface

When the OneEye configuration is created by ADS, it is already setup with a DAS interface.

Select the interface in the Browser box and delete it with “right click and remove” as it is not required in

this example.

1

1

Implementation - OneEye

Configuring the UART interface: Signal creation

The first step is to create 2 signals to connect the received and transmit data over the UART.

Create a signal group and set its name property to bb.

Implementation - OneEye

Add two signals of type char into the bb group, name them in and out, and set their title property to

respectively BB in and BB out.

Implementation - OneEye

Configuring the UART interface: COM port

Right click in an empty area of the Browser box, and select Add child -> Interface. Then right click on the

created interface and select Add child -> com. Select the com item and set its device property to the COM

port connected to the AURIX board. Set the baudrate property to 115200 and click connect.

The COM port is now opened and ready for communication.

Implementation - OneEye

Configuring the UART interface: Transmit stream

Right click on the interface in the Browser box, and select Add child -> dataMessageHandler. Then right

click on the created dataMessageHandler and select Add child -> message to create a message item.

Configure the message with the id=0xFE, interval=0.001, send-on-new-data checked, dir=tx, stream

checked.

Implementation - OneEye

Right click on the message, and select Add child -> field.

Configure the field with name=bb.out, bit-pos=0, buffer=512.

Now, data will be transmitted over the UART each time the bb.out signal is written with some data.

Implementation - OneEye

Configuring the UART interface: Receive stream

Right click on the dataMessageHandler and select Add child -> message to create a second message item.

Configure the message with the id=0xFF, interval=-1, dir=rx, stream checked.

Implementation - OneEye

Right click on the message, and select Add child -> field.

Configure the field with name=bb.in, bit-pos=0.

Now each time data are received over the UART, the bb.in signal will be updated.

Implementation - OneEye

Configuring the UART interface: Push button

Drag and drop a pushButton widget from the toolbox onto the layout, configure it with title=Setup Serial

Interface, on-click={show.connection.ui}.

Clicking the button now shows the COM port configuration window.

Implementation - OneEye

Configuring the BB protocol

Right click in an empty area of the Browser box, and select Add child -> protocolEngine. Then right click on

the created protocolEngine and select Add child -> protocol-core-bb. Connect the BB protocol stream to

the bb.in and bb.out signals by setting respectively the data-in and data-out properties. Set the name

property to BB-core. And set the timeout to 2000 ms so that frames are dropped after 2 seconds in case the

microcontroller is not answering.

Implementation - OneEye

Configuring the Data multiplexer: signals creation

Create a signal group under the signals root and set its name property to mux.

Implementation - OneEye

Add two signals of type char into the mux group, name them in and out, and set their title property to

respectively Mux in and Mux out.

Implementation - OneEye

Creating signals to send commands to the AURIX

Create a signal group under the signals root and set its name property to command.

Add two signals of type float into the command group, name them max and increment, and set their title

property to respectively Max and Increment.

Implementation - OneEye

Creating signals for the received data

Create a signal group under the signals root and set its name property to status.

Add two signals of type float and sint32 into the status group, name them signalA and signalB, and set their

title property to respectively Signal A and Signal B. Note that the data type must match the one defined in

the AURIX C struct DataStreaming_Data_0.

Implementation - OneEye

Create the slider widgets to send command to the AURIX

Drag and drop a slider widget from the toolbox onto the layout, set the slider properties auto-connect to

command.max. and max to 1200,

Implementation - OneEye

Create the graph widgets to display the signals value

Drag and drop a graph widget from the toolbox onto the layout.

Implementation - OneEye

Create the graph widgets to display the signals value

Drag and drop a Graph Channel (channel) widget from the toolbox onto the layout, set the channel

properties auto-connect to status.signalA, unit-per-division-y to 200, and color to green. Repeat the

operation for a second channel and set the channel properties auto-connect to status.signalB, and color

to black.

Implementation - OneEye

Create the muxDemux widgets to connect the BB protocol to the graph and slider widgets

Drag and drop a Mux-Demux (muxDemux) widget from the toolbox onto the layout, set the muxDemux

properties data-in and data-out to respectively mux.in and mux.out.

Implementation - OneEye

Right click on the muxDemux widget in the browser box, and select Add child -> muxDemuxMessage, set

the muxDemuxMessage properties id to 0x4000 and dir to demux to decode received messages.

Implementation - OneEye

Right click on the muxDemuxMessage in the browser box, and select Add child -> muxDemuxField, set the

muxDemuxField properties name to status.signalA, bit-pos to 0.

Repeat the operation for a second signal and set its properties name to status.signalB, bit-pos to 32.

Note: the status.signalA and status.signalB signal size (32 bits), type (float / sint32) and offset (0 / 32) must

match the data member signalA and signalB of the C struct DataStreaming_Data_0.

Implementation - OneEye

Right click on the muxDemux widget in the browser box, and select Add child -> muxDemuxMessage, set

the muxDemuxMessage properties id to 0x4001 and dir to mux to encode and send messages. Set the

length property to 4 bytes, which corresponds of the size of the C struct DataStreaming_Data_1.

Implementation - OneEye

Right click on the muxDemuxMessage in the browser box, and select Add child -> muxDemuxField, set the

muxDemuxField properties name to command.max, bit-pos to 0, and check send-on-new-data.

Note: the command.max signal size (32 bits), type (float) and offset (0) must match the data member max or

the C struct DataStreaming_Data_1.

Connect the Mux-Demux widget to the BB protocol

Right click on the protocol-core-bb and select Add child -> target. Select the target item and set local-port

and remote-port to 1 to match the AURIX settings, set signal-in=mux.out, signal-out=mux.in, and forward

checked.

Implementation - OneEye

Implementation - OneEye

Test the data multiplexer interface

Save your configuration with CTRL+S and, exit the edit mode with the OneEye menu “Options -> Edit mode”
to only see the GUI.

Restart the AURIX software.

Move the slider cursor to change the max value and affect the generated signals value.
1

1

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2022-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
OneEye_UART_Mux_1
_KIT_TC275_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

