AURIX™ TC2xx Microcontroller Training 'y
V1.0.0 (Infineon

Please read the Important Notice and Warnings at the end of this document

(infineon

Scope of work

This example shows how to identify the root cause of a trap.

The tutorial describes what types of traps are supported by the AURIX™
microcontroller, their root causes and how to identify them. AURIX™
architecture supports different types of traps. Three different traps can be
provoked with this example and the tutorial guides the user through the
needed steps to observe the root cause of each trap.

(infineon

Introduction

» A trap occurs as a result of an event such as a Non-Maskable Interrupt
(NMI), an instruction exception, a memory management exception or an
lllegal access. Traps are always active; they cannot be disabled by
software

» The TriCore™ architecture specifies eight general classes for traps. Each
trap class has its own trap handler. Within each class, specific traps are
distinguished by a Trap Identification Number (TIN)

» Traps can be further classified as synchronous or asynchronous, and as
hardware or software generated

» Three different combinations of trap types are supported:
— Synchronous and hardware generated
— Asynchronous and hardware generated
— Synchronous and software generated

infineon
Hardware setup

This code example has been developed
for the board KIT_AURIX_TC275 LITE. g —

D scL 6RO Gl
EEDcN cs Gl
D 3v3

\IIIIIII-

www.infineon.com/AURIX-lite-Kit
TC275 Aurix-V1.1
AURIX™ TC275 lite Kit

29

Gl Infineon £ o

e
[CNC]
[cXS]
[cXC]
(ONC]
[ONC]
(CNC]
e
[clc]
oe
@6
[cNC]
(CNC]
e
(CNC)
e
e
e
[cXc]
o

of=N=N=N-N-N=N=N"]

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Implementation

Supported traps

The following table provides an overview about all supported traps and their types:

TIN |Name Synch. / HW/ |[Definition
. Asynch. SW
TIN |Name Synch. / HW / Definition Class 3 — Context Management
Asynch. SW 1 FCD Synch. HW Free Context List Depletion (FCX = LCX).
Class 0 — MMU 2 CcDO Synch. HW Call Depth Overflow.
0 VAF Synch. HW Virtual Address Fill. 3 cobu Synch. HW Call Depth Underflow.
1 VAP Synch. HW Virtual Address Protection. 4 FCU Synch. HW Free Context List Underflow (FCX =0).
- 5 Ccsu Synch. HW Call Stack Underflow (PCX=0).
Class 1 — Internal Protection Traps 6 CTYP Synch. HW Context Type (PCXL.UL wrong).
1 PRIV Synch. HW Privileged Instruction. 7 NEST Synch. HW Nesting Error: RFE with non-zero call depth.
2 MPR Synch. HW Memory Protection Read. Class 4 — System Bus and Peripheral Errors
3 MPW Synch. HW Memory Protection Write. 1 PSE Synch. HW Program Fetch Synchronous Error.
- . 2 DSE Synch. HW Data A Synch Error.
4 MPX Synch. HW Memory Protection Execution. ik e
. - 3 DAE Asynch. HW Data Access Asynchronous Error.

5 MPP Synch. HW Memory Protection Peripheral Access. 2 CAE Asynch W Coprocessor Trap Asynchronous Error.
6 MPN Synch. HW Memory Protection Null Address. 5 PIE Synch HW Program Memory Integrity Error.
7 GRWP Synch. HW Global Register Write Protection. 6 DIE Asynch HW Data Memory Integrity Error.
Class 2 — Instruction Errors 7 TAE Asynch HW Temporal Asynchronous Error

Class 5— Assertion Traps
1 10PC Synch. HW lllegal Opcode. s - -

- 1 OVF Synch. SW Arithmetic Overflow.

2 uoprc Synch. HW Unimplemented Opcode. 2 [SOVF |Synch. SW |Sticky Arithmetic Overflow.
3 OPD Synch. HW Invalid Operand specification.
4 ALN Synch. HW Data Address Alignment. Class 6 — System Call”
5 MEM Synch. HW Invalid Local Memory Address. [s¥s [Synch. [sw__|systemcall

Class 7 — Non-Maskable Interrupt

0o [N Jasynch. [HW [Non-Maskable Interrupt.

Please refer to the TriCore™ TC1.6.1 core architecture manual and the AURIX™ TC27x D-Step
User’'s Manual for detailed information about each trap.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Implementation

Trap types

» Synchronous traps:

— Synchronous traps are associated with the execution or attempted execution of specific
instructions or with attempts to access a virtual address that requires the intervention of the
memory-management system

— The trap is triggered and serviced immediately

> Asynchronous traps:

— Since asynchronous traps are associated with hardware conditions, they are similar to
interrupts

— They are routed via the trap vector

— Some asynchronous traps are triggered indirectly from instructions, that have been previously
executed, but the direct association with the instructions causing the trap is lost

» Hardware traps:

— Hardware traps are generated in response to exception conditions detected by the hardware

— In most, but not all cases, the exception conditions are associated with the attempted execution
of a particular instruction

» Software traps:

— Software traps are generated as an intentional result of executing a system call or an assertion

instruction

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Implementation

Trap handling

> When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two
components that can be used to determine more information about the trap and why it was caused
(refer to slide Supported traps):
— The Trap Class Number (TCN)
— The Trap Identification Number (TIN)

> In most cases, the debugger will stop the code execution within one of eight trap handlers
(implemented in the iLLD header IfxCpu_Trap.c)

> An instance of the structure IfxCpu_Trap is declared within each trap handler. When a trap occurs,
the instance provides four information fields about the trap:
— tCpu: Which CPU caused the trap
- tClass: TCN, Class of the trap (refer to slide Supported traps)
— tld: TIN, Id of the trap (refer to slide Supported traps)
— tAddr: Return Address (RA) (refer to the next slide)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Implementation

Return Address

> The Return Address (RA) might help to locate the specific line of code which caused the trap

> The return address, which is stored in the instance of the IfxCpu_Trap structure, is read from the
return address register A[11]

> Depending on the trap type, the return address is different:

— For most of the synchronous traps, the return address is the 32-bit Program Counter (PC)
of the instruction that caused the trap (The PC holds the address of the instruction which is
currently running when the core is halted.)

— On a System Call (SYS) trap, triggered by the SYSCALL instruction, the return address
points to the instruction immediately following SYSCALL

— A Free Context List Depletion (FCD) trap is generated after a context save operation that
causes the free context list becoming “almost empty”.

The responsible for the FCD trap can be a hardware interrupt or a trap handler. The
operation responsible for the context save normally is completed before the FCD trap is
executed. Because of this, the return address of the FCD trap is the first instruction of the
trap/interrupt/called routine or the instruction following a Save Lower Context (SVLCX) or
Begin Interrupt Service Routine (BISR) instruction

— For an asynchronous trap, the return address is the address of the instruction that would
have been executed next, if the asynchronous trap had not been triggered

Infineon

i

Implementation

Additional debug information

>

The bit field ERROR_ADDRESS of the Data Error Address Register (DEADD) contains the trap
address information for the data memory. The content of the DEADD register is valid if the Data
Synchronous Trap Register (DSTR) or the Data Asynchronous Trap Register (DATR) register
are non-zero (depending on the trap type). The bit fields in the DSTR and the DATR registers can
provide additional information about the trap (refer to the TC27x D-Step User's Manual)
— These information are valid in case of the following traps:

— Data Address Alignment (ALN)

— Data Access Synchronous Error (DSE)

— Data Access Asynchronous Error (DAE)

— Invalid Local Memory Address (MEM)

— Memory Protection Write (MPW)

— Memory Protection Read (MPR)

— Memory Protection Peripheral Access (MPP)

— Memory Protection Null Address (MPN)

Copyright © Infineon Technologies AG 2021. All rights reserved.

(infineon

Implementation

Additional debug information

> The Program Memory Interface Synchronous Trap Register (PSTR) contains synchronous trap
information for the program memory system. The register is updated with trap information for
Program Fetch Synchronous Error traps (PSE)

» The Program (or Data) Integrity Error Address Register (PIEAR / DIEAR) and the Program (or

Data) Integrity Error Trap Register (PIETR / DIETR) can be interrogated to determine the source
of the Program (or Data) Memory Integrity Error (PIE / DIE) more precisely

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Implementation

Trap provocation

> Three different combinations of trap types can be provoked in this example:
— Synchronous Hardware trap
— Asynchronous Hardware trap
— Synchronous Software trap

> The trap provocation is implemented in the function run_trap_provocation() and can be started
by setting one of the three g_provokeXYTrap (X = Synchronous / Asynchronous; Y =
Hardware / Software) variables

> The implemented code for the first two traps is based on the MTU_MBIST_1 and
SMU_IR_Alarm_1 examples. For further information on the code, please refer to the specific
tutorials

> The third trap is provoked by using two instructions: __mtcr() (Move To Core Register) and trapv
(assembly code). For further information on these instructions, please refer to the TriCore™
TC1.6.1 core architecture manual - Instruction set manual

> For a better understanding of the trap behavior, the required code instructions used to avoid the

cause of each trap, are implemented and can be activated by setting the AVOID_PROVOCATION
macro to true

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

After code compilation and flashing the device, perform the following steps:

> Add the three variables “g_provokeSynchronousHardwareTrap”,

Infineon

i

“‘g_provokeAsynchronousHardwareTrap” and “g_provokeSynchronousSoftwareTrap” in the

Expressions window of the debugger

> Add the three registers DEADD, DATR and DSTR in the Expressions window of the debugger

i== Variables | ®s Breakpoints &1 Expressions =2

Expression Type
= g_provokeSynchronousHardwareTrap unsigned short
69 g_provokeAsynchronousHardwareTrap unsigned short
= g_provokeSynchronoussoftwareTrap unsigned short

ial GRP{ CPU).REG(CPUD_DEADD)
51 GRP(CPU).REG(CPUO_DATR)
sa GRP{ CPU).REG(CPUD_DSTR)

oe Add new expression

Unsigned / Readable Writeable
Unsigned / Readable Writeable
Unsigned / Readable Writeable

Copyright © Infineon Technologies AG 2021. All rights reserved.

Value

(oD
Oneld
el

i.h_

Run and Test

Infineon

i

1.1 Synchronous hardware trap

>

Provoke the synchronous hardware trap by setting the value of
“‘g_provokeSynchronousHardwareTrap” in the “Expressions” window to “1”
Press the “Resume” button to start the program

Observe the following information:

The debugger stopped in the IfxCpu_Trap_busError() function (ItxCpu_Trap.c)

The “Variables” window of the debugger displays the “trapWatch” structure and the value of its
parameters

The trap is provoked by CPUQ, it is a trap of class 4, the trap id is 2 and the Return Address
(RA) is 0x80000042 (2147483714,,)

It is a Data Access Synchronous Error (Trap table, class 4 and tin 2)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Run and Test

1.2 Synchronous hardware trap

> Observe the following information:

— The call stack in the “Debug” window displays the function which was called before the trap
occurred (in this case the function run_trap_provocation(), the address displayed behind this
function equals the Return Address (RA))

— By clicking on this function, the debugger jumps to the specific code line in the
CPU_Trap_Recognition.c file and to the corresponding assembly line in the ,Disassembly”
window. The address of the assembly line equals the Return Address (RA)

% Debug 2
v T CPU_Trap_Recognition_1_KIT_TC275_LK [TASKING C/C++ Debugger]
w (¢ Generic Infineon AURIX Board [taskingdebugger.exe]
~ f# Thread [core 0] (Suspended)
= IfxCpu_Trap_busError() at IfxCpu_Trap.c:175 0x80000e86

= run_trap_provocation() at CPU_Trap_Recognition.c:79 0x 80000042 CPU_Trap_Recognition.c & | [§ IfxCpu_Trap.c
= corel_main() at Cpul_Main.c:63 0x200000d6 void run_trap_provocation(veid)
~ f® Thread [core 1] (Suspended) {
= _Corel_start() at fxCpu.h:366 0x20000aaa 1 if (g_provokeSynchronousHardwareTrap) /* Code is based |2 Disassembly 22 | 5= Outline
~ f# Thread [core 2] (Suspended) { et inter to Read Dat nd Bit Flip Register
= _Corel start{) at IfxCpu.h:866 0x80000dd0 1 Ifx MC *mc = (Ifx_MC *)(IFXMTU_MC_ADDRESS BASE + Goeooooosoooagoc: mavh.a als, #axcoen
S B BaeaEaaE8R220838 | lea 315,[315]93(4
#if ?ﬁiap:ﬁggﬂleo- e e A36PAPRREERERB3L : 1d.hu d15,[als]exe
IfocuﬁdtJ:lear‘Safetyéndin:.it‘(.i:f;(ScuI.vfdiigetSa‘.FE GopooooecoRREa3E: jI dlElaxsaaaEM
TfxMtu_enableMbistShell(MBIST_REGISTER); /* En 76 Ifx MC *mc = (Ifx M
Fendif GBABARRA30A0AA3a : movh.a als, #8xfees
Modify register value. If the steps above are r GapaBEEBEEREEE3E lea als,[al5]ex63
a mc->RDBFLLB]. Ut+; 85 mc - >RDBFL[@] . U++;
. #if AVOID_PROVOCATION ¥ PABRRABRERBBRRA2 : 1d.hu dlS,[alS]ElxaEi
IfxSculdt_setSafetyEndinit(IfxSculdt_getSafety SRR 32880046 add dils S HBx1
Fandif BEABBARBEABRBALE : st.h [al5]@xa8,d15
76 Ifx_MC *mc = (Ifx_M
BEBEBEEEBB8B C ; ig Bx3E0828096

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run

and Test

1.3 Synchronous hardware trap

Infineon

i

» Observe the following additional information:

The LBE bit field in the DSTR register is set (Load Bus Error - Data load from bus causing
error, refer to AURIX™ TC27x D-Step User’'s Manual)

The DEADD register displays the address 0xf00663a0, which is the address of the modified

register which caused the trap

By running a file search (Search -> File) for the address, the search finds the specific RDBFLO
register which equals the modified MBIST DMA register

== Variables | ®e Breakpoints &7 Expressions &I

Expression Type
= g_provokeSynchronousHardwareTrap unsigned short
03: g_provokeAsynchronousHardwareTrap unsigned short
4= g_provokeSynchronousSoftwareTrap unsigned short
Y51 GRP(CPU).REG(CPUO_DEADD) Unsigned / Readable Writeable
% GRP(CPU).REG(CPUQ_DATR) Unsigned / Readable Writeable
~ Hiil GRP(CPU).REG(CPUO_DSTR) Unsigned / Readable Writeable
i SRE Readable Writeable
il GAE Readable Writeable
iiil LBE Readable Writeable
il RES Readable Writeable
sisl CRE Readable Writeable
W RES_6 Readable Writeable

Value

1
0
0

0xfO0663a0

00
Oxd
0x0
0=
0x1
=0
0x0
0x0

[Memory 4" Search i3 & B

'Ixf00B63a0' - 1 match in working set 'ActiveProject’ (*.%)
w =% CPU_Trap_Recognition_1_KIT_TC275_LK
v (2% Libraries
v (22 Infra
v 25 s
v (£ 27D
w [,_—? _Reg
v ET fxMc_reg.h

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

Infineon

i

2.1 Asynchronous hardware trap

>
>

Restart the program by pressing the “Restart” button in the debugger

Provoke the asynchronous hardware trap by setting the value of
“‘g_provokeAsynchronousHardwareTrap” in the “Expressions” window to “1”
Press the “Resume” button to start the program

Observe the following information:

The debugger stopped in the IfxCpu_Trap_busError() function (ItxCpu_Trap.c)

The “Variables” window of the debugger displays the “trapWatch” structure and the values of
its parameters

The trap is provoked by CPUQ, itis a trap of class 4, id 3

It is a Data Access Asynchronous Error (Trap table, class 4 and tin 3)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

Infineon

i

2.2 Aynchronous hardware trap

> Observe the following information:

The call stack in the “Debug” window displays the function which was called before the trap
occurred (in this case the core 0 was running on core0_main(), the address displayed behind
this function equals the Return Address (RA))

By clicking on this function, the debugger jumps to the specific code line in the
CPU_Trap_Recognition.c file and to the corresponding assembly line in the ,Disassembly”
window. The address of the assembly line equals the return address

Because it is an asynchronous trap, the specific code line is not pointing to the line which is
causing the trap. It is the code line of the instruction that would have been executed next, if the
asynchronous trap had not been triggered

Since there is no relation between the highlighted instruction and the generated trap, it is
impossible to find the line of code by using the Return Address (RA) in this example

4y Debug &3
v i CPU_Trap_Recognition_1_KIT_TC273_LK [TASKING C/C++ Debugger]
w {32 Generic Infineon AURIX Board [taskingdebugger.exe]
~ f# Thread [core 0] (Suspended)
= IfxCpu_Trap_busError() at ficCpu_Trap.c:175 0x 2000086
= corell_main(} at Cpu0_Main.c:68 0x800000d2
~ f# Thread [core 1] (Suspended)
= corel_main() at (x8000021c
~ f# Thread [core 2] (Suspended)
= corel_main() at (xB000021c

Copyright © Infineon Technologies AG 2021. All rights reserved.

(in/fifneon

Run and Test

2.3 Asynchronous hardware trap

> Due to the fact that the Return Address (RA) cannot be used, the following information might help

to locate the cause of the trap:

— The SBE bit field in the DATR register is set (Store Bus Error - Data store to bus causing error,
refer to AURIX™ TC27x D-Step User's Manual)

— The DEADD register displays the address 0xf003682c, which is the address of the modified
register that caused the trap

— By running a file search (Search -> File) for the address, the search finds the specific
SMU_AGC register which equals the modified register. The name of the modified register helps
to find the code line which is causing the trap (By using another search for ,AGC")

== Variables | % Breakpoints &{ Expressions D Memow 5 Search &2
Expression Type Value N
?, : oSyl HardwareT ?D. A short 0 AGC' - 1.329 matches in working set "ActiveProject’ (%)
= g_provokeSynchronousHardwareTrap unsigned sho -
o) v = CPU_Trap_Recognition_1_KIT_TC275_LK
= g_provokeAsynchronousHardwareTrap unsigned short 1 5. .
¢4 g_provokeSynchronousSoftwareTrap unsigned short 0 W= L;I::Irarles
i GRP(CPU).REG(CPUO_DEADD) Unsigned / Readable Writeable 0xf003682¢ w [ILLD
~ i GRP(CPU).REG(CPUD_DATR) Unsigned / Readable Writeable 0x8 W L—‘; TC270
RES - PV o v £ Tricore
1l SBE D Memory 4 Search 3 L_?L; _
i RES_3 '0xf003682¢' - 1 match in working set 'ActiveProject’ (*.%) | B .
it CWE v 128 CPU_Trap_Recognition_1_KIT_TC275_LK N (=5 Smu
o CFE w (25 Libraries =% Infra
RES 6 v £ Infra v [CPU_Trap_Recognition.c
: = P
i SOE v & st = 95 MODULE_SMUAGEB.IGCS0 = 1;
t SME v (25 TC27D
3
1t RES_9 v & Reg

GRP(CPU).REG(CPUD_DSTR) v [é fSmu_regh
A z < 119: #define SMU_AGC /*lint --(923)*/ (*(volatile Ifx_SMU_AGCxFO03682 Cu)

Add new expression

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

Infineon

i

3.1 Synchronous software trap

>
>

Restart the program by pressing the “Restart” button in the debugger
Provoke the synchronous software trap by setting the value of
“‘g_provokeSynchronousSoftwareTrap” in the “Expressions” window to “1”
Press the “Resume” button to start the program

Observe the following information:

The debugger stopped in the IfxCpu_Trap_assertion() function (IfxCpu_Trap.c)

The “Variables” window of the debugger displays the “trapWatch” structure and the value of its
parameters

The trap is provoked by CPUQ, it is a trap of class 5, the trap id is 1 and the Return Address
(RA) is 0x80000090 (2147483792,,)

It is an Arithmetic Overflow Error (Trap table, class 5 and tin 1)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Infineon

i

Run and Test

3.2 Synchronous software trap

> Observe the following information:

— The call stack in the “Debug” window displays the function which was called before the trap
occurred (in this case the function run_trap_provocation(), the address displayed behind this
function equals the Return Address (RA))

— By clicking on this function, the debugger jumps to the specific code line in the
CPU_Trap_Recognition.c file and to the corresponding assembly line in the ,Disassembly”
window. The address of the assembly line equals the Return Address (RA)

?%f;; Debug 3
~ 15 CPU_Trap_Recognition_1_KIT_TC275_LK [TASKING C/C++ Debugger]
w (32 Generic Infineon AURIX Board [taskingdebugger.exe]
w o Thread [core 0] (Suspended)

Ifx Cpu_Trap_assertion() at IfxCpu_Trap.c:186 0xB0000e42

CPU_Trap_Recognition.c & g IfxCpu_Trap.c ¢ IfixCpu_CStart(

= run_trap_provocation() at CPU_Trap_Recognition.c:121 (x 30000090 else if(g_provokeSynchronousSoftwareTrap)
= corel_main() at Cpu0_Main.c:63 0x300000d6 {
w o Thread [core 1] (Suspended) Ifx_CPU_PSW psw;
= _Corel_start() at fxCpu.h:866 0x80000aaa ¢ Get register nent e Frograt
w o Thread [core 2] (Suspended) 101 psw.U = __mfcr(CPU_PSW); = Disassembly 2 | = Outline
= . sw.B.V = 1: erflow bi 102 psw.B.V = 1; t tf
= _Core2 start() at [fxCpu.h:866 (x30000ddD P > 0000000080000084: insert d15,d15, #0x1, #0x1e, #0x1
! 108 __mtcr(CPU_PSW,psw.U);
#if AVOID PROVOCATION 0000000030000088 : mtcr #0xfe0d,d15
s = 3 g ' 000000003000008C : isync
psw.B.V = 0; Reset the overflol 4 __asm("trapv");
#endif > 0000000080000090 : trapy
101 psw.U = _ mfcr(CPU_PSW);
0000000080000094 : jg 0x80000096
__mtcr(CPU_PSW,psw.U); Write modif. 115 }
" "y. /% TRAPV inctruction | ©000000080000096: ret
| —asm("trapv"); RAPV InSTruction || gooo0000s0000098: call _c_init (@x80001a8c)
} 000000008000009¢ : ret
671 __enable();
00000000800000%¢ : enable
50 IfxScukldt_disableCpulatchdog(IfxSculWdt_getCpulWatchdogPassu
00000000800000a2 call IfxSculdt_getCpuWatchdogPassword/IfxCpu_getCorel
00000000800000a6 mov d4,d2
00000000800000a8 call IfxSculdt_disableCpulatchdog/IfxCpu_getCoreIndex
51 TFxSculidt disahleSafetviatchdos(TfxSculldt petSafetvilatchde

Copyright © Infineon Technologies AG 2021. All rights reserved.

(infineon

References

@ » AURIX™ Development Studio is available online:
@ @ » https://lwww.infineon.com/aurixdevelopmentstudio
)

AURIX™

Use the ,/mport..." function to get access to more code examples.

> More code examples can be found on the GIT repository:
» https://github.com/Infineon/AURIX_code_examples

v

For additional trainings, visit our webpage:
https://www.infineon.com/aurix-expert-training

v

~

For questions and support, use the AURIX™ Forum:
https://www.infineonforums.com/forums/13-Aurix-Forum

v

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-06
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
CPU_Trap_Recognition_1
_KIT_TC275_LK

IMPORTANT NOTICE

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is-exclusively
intended for technically trained staff. It is the
esponsibility of ustomer’s technical
departments to—evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

(infineon

For further information on the product,
technology, delivery terms and conditions and
prices please “contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly “approved b
Infineon Technologies in a written\ document
signed by authorized representatives of\Infineon
Technologies, Infineon Teehnologies’ products
may not be used in—any applications where a
failure of the-product or any consequences of the
use thereof can reasonably be expected to result
n personalinjury.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

