
AURIX™ TC3xx Microcontroller Training

V1.0.1

CCU6_ADC_1

for KIT_AURIX_TC334_LK
CCU6 ADC conversion triggering

Please read the Important Notice and Warnings at the end of this document

Scope of work

CCU6 timers T12 and T13 are used to trigger the Enhanced Versatile

Analog-to-Digital Converter (EVADC).

The Timer T12 is defining the Analog-to-Digital Converter (ADC) sample

rate. Due to the instability of the signals (e.g. the overshoot period), a delay

is introduced by Timer T13 after each period match of Timer T12. This

ensures that the measurement is done when the signal is already stable.

UART communication is used to display all measured values on a terminal

monitor.

Introduction

› The Capture/Compare Unit 6 (CCU6) is a high-resolution 16-bit capture

and compare unit with application specific modes, mainly used for AC

drive control

› The CCU6 unit is made up of a Timer T12 Block with three

capture/compare channels and a Timer T13 Block with one compare

channel. Timer T12 can also be used as a trigger for Timer T13

› When a period match occurs, the timer can start counting again

(continuous mode) or can stop and wait for another trigger (single shot

mode). In this example, Timer T12 is used in continuous mode and it

triggers Timer T13, which is configured in single shot mode

› The CCU6 has four Service Request Output lines that can be used to

trigger other peripherals like ADC, without CPU intervention at different

time intervals

Introduction

› The Enhanced Versatile Analog-to-Digital Converter module (EVADC) of

the AURIX™ TC33x comprises 4 independent analog to digital

converters, each converting with a resolution up to 12-bit

› Several request sources can request an Analog/Digital conversion

following different configurations. A conversion can be requested to be

done once or repeatedly

› Interrupts can be generated once conversions are finished

› External peripherals like CCU6, GTM, etc. can trigger a sampling request

This code example has been developed

for the board KIT_A2G_TC334_LITE.

In this example, the pin AN0, connected

to the board’s potentiometer, is used.

Note: The channels can be HW filtered by the

board, depending on which capacitor/resistors

couples are soldered. Consult the AURIX™

TC334 lite Kit’s User Manual to check which

channels are filtered by HW.

Note: The reference voltage (VAREF) of the

EVADC on the board KIT_A2G_TC334_LITE

is 3.3 V.

Hardware setup

Implementation

Configure the CCU6 unit

Configuration of the CCU6 Timer is done in the init_CCU6() function by initializing an instance of the

IfxCcu6_Timer_Config structure, which contains the following fields:

› timer – a parameter that allows to choose which of the two timers to configure. In this case, T13 is the

master Timer and T12 is used as slave for its trigger.

› base – a structure that allows to set:

– t12frequency – input clock frequency in Hz of the Timer T12

– waitingTime – 16-bit register that determines the maximum count value for the Timer T12. It is used

as value for the period register, which represents the waiting time in ticks before a new trigger event

occurs for Timer T13

– t13frequency – input clock frequency in Hz of the Timer T13

– t13period – 16-bit register that determines the maximum count value for the Timer T13

› trigger – a structure for configuring the triggers for both timers

– t13InSyncWithT12 – allows synchronous operations between the two timers

› timer13 – a structure that allows to:

– t12SyncEvent – set the Timer T12 event that represents the Timer T13 trigger

– t12SyncDirection – define if a trigger event is to be considered valid based on the counting direction

of the Timer T12

Implementation

The functions used for CCU6 configuration are:

› IfxCcu6_Timer_initModuleConfig() – fills the configuration structure with default values

› IfxCcu6_Timer_initModule() – initializes the timer module with the user configuration

› IfxCcu6_enableInterrupt() and IfxCcu6_routeInterruptNode() – indicate which event generates the

Interrupt Service Request and on which Service Request line. This enables the CCU6 to trigger an ADC

conversion without the CPU intervention

› IfxCcu6_enableSingleShotMode() – configures the timer to count in single shot mode

› IfxCcu6_Timer_start() – starts the timer

The above functions can be found in the iLLD headers IfxCcu6_Timer.h and IfxCcu6.h.

Implementation

Timer module frequency

In Timer Mode, the input clock of the timer module is derived from the internal module clock fCC6.
By default, the internal module clock fCC6 is initialized by the iLLDs to run at 100 MHz.

Starting from this value, it is possible to set the timer module frequency to the following exact values:
100000000 Hz = 100 MHz (fCC6)
50000000 Hz = 50 MHz (fCC6 / 2)
25000000 Hz = 25 MHz (fCC6 / 4)
12500000 Hz = 12.5 MHz (fCC6 / 8)
6250000 Hz = 6.25 MHz (fCC6 / 16)
3125000 Hz ~ 3 MHz (fCC6 / 32)
1562500 Hz ~ 1.5 MHz (fCC6 / 64)
781250 Hz ~ 780 KHz (fCC6 / 128)
390625 Hz ~ 390 KHz (fCC6 / 256)
195312.5 Hz ~ 200 KHz (fCC6 / 512)
97656.25 Hz ~ 100 KHz (fCC6 / 1024)
48828.12 Hz ~ 50 KHz (fCC6 / 2048)
24414.06 Hz ~ 25 KHz (fCC6 / 4096)
12207.03 Hz ~ 12.5 KHz (fCC6 / 8192)
6103.51 Hz ~ 6 KHz (fCC6 / 16384)
3051.75 Hz ~ 3 KHz (fCC6 / 32768)

Note: Any value can be set as frequency parameter, but the software will round up the chosen value to the
nearest higher frequency listed in the above table (e.g. setting timerConfig.base.t12Frequency = 400000
the timer will run at 781250 Hz).

Implementation

Period Match Frequency calculation

To calculate the actual Period Match frequency fPM (the number of occurrences per second in which the timer

counter value reaches the period value and is reset), two parameters have to be considered: Timer clock

frequency and its period.

› The Timer clock frequency can be freely selected as described in the previous slide

› The period value is stored in a 16-bit register, which limits its maximum value to 65535

The Period Match frequency and period can then be calculated as:

fPM = (Timer clock frequency) / (period + 1)

TPM = (period + 1) / (Timer clock frequency)

In this example, a clock frequency equal to 48828 Hz is chosen for both timers, while the periods are set to

have a T12 period match frequency equal to 1 Hz (ADC sample rate, 1 sample/sec) and a T13 period match

(delay) time equal to 0.5 seconds (ADC sample delay).

Implementation

Configuration of the EVADC

The configuration of the EVADC is done in the init_EVADC() function in three different steps:

› Configuration of the EVADC module

› Configuration of the EVADC group

› Configuration of the EVADC channel

Configuration of the EVADC module

The functions used for configuring the EVADC module are:

› IfxEvadc_Adc_initModuleConfig() – initializes the EVADC module configuration structure with the

default values

› IfxEvadc_Adc_initModule() – initializes the EVADC module with the user configuration, which in this

case is the default configuration

Implementation

Configuration of the EVADC group

Configuration of the EVADC group is done by initializing an instance of the IfxEvadc_Adc_GroupConfig

structure, which contains the following fields:

› arbiter – a structure that represents the enabled request sources, which can be one of the three queue

sources. In this example, arbiter.requestSlotQueue0Enabled is set to TRUE, thus enabling the request

queue 0

› queueRequest[0] – a structure that allows to configure the queue request source 0 by setting:

– triggerConfig – a parameter that specifies the trigger configuration

› master – to indicate which converter is the master

› groupId – to select which converter to configure

The functions used for configuring the EVADC group are:

› IfxEvadc_Adc_initGroupConfig() – fills the group configuration structure with default values

› IfxEvadc_Adc_initGroup() – initializes the EVADC group specified in the parameters with the user

configuration

Implementation

Configuration of the EVADC channel

Configuration of the EVADC channel is done by initializing an instance of the IfxEvadc_Adc_ChannelConfig

structure, which contains the following fields:

› channelId – a parameter that allows to choose which of the channels to configure

› resultRegister – indicates the register where the sample value is stored

› resultPriority – the priority of the result trigger interrupt

› resultServProvider – interrupt service provider for the result trigger interrupt. This can be any of the

available CPUs or the DMA

In this example, the interrupt is used to print the measurements through UART communication.

The functions used for configuring the EVADC channel are:

› IfxEvadc_Adc_initChannelConfig() – fills the channel configuration structure with default values

› IfxEvadc_Adc_initChannel() – initializes the channel with the user configuration

› IfxEvadc_Adc_addToQueue() – add the channel to the queue

When both the CCU6 and EVADC modules are configured, a single scan sequence is triggered by the CCU6

timer T13 period match event.

All the functions used for configuring the EVADC module, group and channel can be found in the iLLD header

IfxEvadc_Adc.h.

Implementation

Events timing

The graph shows the temporal evolution of events: T12 period matches, T13 period matches and ADC

sampling instants.

Implementation

Configuration of the UART

In this example, the UART connection is used to make the debugging more convenient and easier to

understand.

The init_UART() function initializes the UART communication.

The iLLD function IfxAsclin_Asc_initModuleConfig() fills the configuration structure ascConf with

the default values. Then, the parameters used to configure the module are set, depending on the

needed connection: baudrate, sampling mode, interrupts, Tx and Rx buffers and port pins

configuration.

Finally, IfxAsclin_Asc_initModule() initializes the module with the user configuration and

IfxAsclin_Asc_stdIfDPipeInit() initializes the standard interface to use the ASC module.

The above functions can be found in the iLLD header IfxAsclin_Asc.h.

Run and Test

› For this training, a serial monitor is required for visualizing the values. The monitor can be

opened inside the AURIX™ Development Studio using the following icon:

› The serial monitor must be configured with

the following parameters to enable the

communication between the board and the

PC:

– Speed (baud): 115200

– Data bits: 8

– Stop bit: 1

Run and Test

After code compilation and flashing the device, perform the following steps:

› Connect the board to the PC

› Open the serial monitor with the appropriate COM port and settings (can be seen

in the Device Manager)

› Check the ADC conversions sampled every one second in the serial monitor

console

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

Revision history

Revision Description of change

V1.0.1 Fixed image for events timing

V1.0.0 Initial version

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2022-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
CCU6_ADC_1_KIT_TC334_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

