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PSoC™ 6 MCU designing a custom secured system

About this document
Scope and purpose

This document teaches you what is required to create a secured system, from the boot process all the way to
your application execution with PSoC™ 62/63 devices. The companion code example CE234992 PSoC™ 6 MCU:
Security Application Template implements many of the topics described in this document.

Intended audience

This application note is intended for developers that want to learn more about the security features of the
PSoC™62/63 family of devices.

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC™ code examples, please visit our code examples web page.
You can also explore the video training library here.
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1 Introduction

1 Introduction

This application note teaches you about the security features of the Infineon PSoC™ 62/63 families and how to
utilize these features to secure your application. Knowing this information will allow you to design a secure
system that fits the needs of your application.

Note: This application note does not include the PSoC™ 64 Secured MCU, because it does not allow the
flexibility described in this document.

This is an advanced application note and assumes that you are familiar with the basic PSoC™ 6 MCU
architecture described in the device datasheet and the technical reference manual (TRM).

This document will cover the following topics:

+ Assessing your security needs

«  Security Features of the PSoC™ 62/63

+ Understanding the PSoC™ 6 bootup sequence

«  Whatis a Chain of Trust (CoT) and do you need it?

«  Whatis and how to use a public/private key pair

«  Signing your application

This application note does not cover side channel attacks where an attacker tries to gain information from a

microntroller by exploiting weaknesses in the device implementation, which includes timing, power-
monitoring, electromagnetic attacks, and micro probing.

Use the code example CE234992 “PSoC6™ MCU: Security Application Template” as a companion document with
this application note. Most code snippets in the application note are copied directly from CE234992. Also,
CE234992 can be used as a template for a secured application. It supports the following features:

+  Secure boot

+ Bootloader (MCUboot)

+ Dual CPU (CM0+ and CM4) support

« Real time RTOS (FreeRTOS)

+  Device firmware update (DFU)

e 1M,2M,512Kand 256 KPSoC™61/62/63 devices

There are two generations of PSoC™ 6 devices and they have some minor differences in the way they operate or
how they are configured. The table below identifies the PSoC™ 6 families and which generation they belong.
This document will refer to these parts as 15t and 2"d Generation PSoC™ 6 devices.

Table1 PSoC™ 6 device generations

15t Generation PSoC™ devices | CY8C61x6, CY8C62x6, CYS8C63x6
CY8C61x7, CY8C62xT7, CYBCH3XT

2nd Generation PSoC™ devices | CY8C61x4, CY8C62x4
CY8C61x5, CY8C62x5
CY8C61x8, CY8C62x8
CYBC61xA, CYBC62xA

Application Note 4 002-21111 Rev. *F
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2 System security

2 System security

Twenty-five years ago, few embedded system developers thought too much about security. Security meant that
you did not release your source code to the public and you knew that few people would attempt to reverse
engineer the binary code that was in your device. Also, the level of connectivity was almost non-existent,
compared to today with the Internet of Things. Even the smallest electronic devices are wirelessly connected
with either Wi-Fi or Bluetooth® LE. The other change is that most of the embedded devices on the market
contain one of more Arm’ processors and share a common SWD (Serial Wire Debugger) which makes it easy for
a hacker to switch from one device to another without much of a learning curve.

At the start of any new project, security should be discussed and determine what needs to be protected.
Usually the first thought is to protect the code and hardware from being hacked, but you should also consider
any user data that may be collected or transmitted to the cloud or another location. It is not just that you are
protecting code from being read but, protecting it from being modified or misused as well. The same goes for
user data. Manipulating user data can be just as dangerous as reading the data. When evaluating what should
be protected in your system, the list below is some of the items that should be considered. Not all the items in
this list are required for every application, but you need to decide what is important.

«  Protect OEM IP (code/data/keys)

+  Protect end user data and keys

«  Confirm code integrity (CRC or hash)

+  Authenticate code origin (signing)

« Authenticate firmware updates

+  Protect hardware from unauthorized usage

« Isolate the two CPU’s memory space (dual core)

+  Protect data transmitted to and from the device

Protecting your firmware IP is probably the most obvious concern. If someone were to download and reverse

engineer your code, they could more quickly get to market and pose direct competition. Although this is a valid

threat, a security breach into your system could prove much more devastating to your product line than just
added competition. If it was found that your device could be compromised, user data stolen, or taken control
of, it could end the sales of the product overnight.

Most of the attacks usually come from outside the microcontroller, but there are attacks that can come from

inside as well. Some attacks are accidental, for example, one CPU might crash due to a coding error and write

data over the second CPUs stack or data area. Although this is not a malicious attack, the outcome can be just
as serious.

When using two cores and code from multiple sources, without any protection applied, both CPUs have full

access to the entire memory space. By isolating and protecting these CPUs from each other, you can guarantee

that malicious or accidental failure does not cause system instability, failure, or misuse.

There are four main ways products can be hacked:

+ Direct access to the debug port. With the use of common debug tools and dongles, accessing or
reprogramming firmware or examining internal data is easy. Most common CPUs are based on just a
few architectures, so hacking or reverse engineering a product is easy if the device is left unsecured.

« Direct connection to a communication port such as SPI, I2C, or a UART. Depending on the firmware,
this connection may allow firmware to be read or updated with non-sanctioned software. If one person
decodes the protocol and posts it on the internet, you can have many hackers gaining access.

«  Network connections such as Bluetooth’, Wi-Fi or ethernet. This has become the standard method of
hacking because it does not require physical contact. The perpetrator can be out on the street or half way
around the world via the internet. The firmware stacks to handle these interfaces are complex and difficult
to fully test against all attacks.

« Third-party code that’s installed in the device after it has been shipped. For example, the applications that
you download into your smart phone. Malicious code in third-party applications can be dangerous because

Application Note 5 002-21111 Rev. *F
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the code is already inside the device. This code must be kept inside a controlled environment with limited

access to memory and system utilities.

Not all applications require the full gamut of security tools, you may not need to read all sections of this
application note. Table 2 provides a few application examples and which sections of the Security features
chapter you should consider reading.

Table 2 Reference sections for security tools
Example Firmware updates | Intellectual Sections to read Comment
property secure (Chapter 3)
Simple toy #1 No No NA Device does not
need to be secure.
Simple toy #2 No Yes +  Device lifecycle |Device does not
. Debug ports communicate with
other devices or
connect to the
cloud. Disabling the
debug portsis all
that is required.
Simple appliance Yes Yes +  Device lifecycle |Deviceis not
. Debug ports connected to
. wireless devices.
+ Authenticate .
Code is updated
- Col with a dedicated
link or device.
Code requires
authentication.
Simple connected Yes Yes +  Device lifecycle |This device may be
appliance «  Debugports connected wirelessly
« Authenticate to cloud or
other devices. Code
» Col updates need to be
authenticated.
Wi-Fi/Bluetooth’ LE  |Yes Yes «  Device lifecycle |Deviceis connected
connected device « Debugports with a complex )
. Authenticate stack (Bluetooth LE,
Wi-Fi, etc.). The
» Col stacks should be
+  Protection units | protected/isolated.
Also like the
previous example,
code should be
authenticated.
Application Note 6 002-21111 Rev. *F
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2 System security

2.1 Security basics

A security plan is how you define access to your device. You can split this into two types, external and internal.

2.1.1 External access

By default, external access is only through the debug port unless the designer adds an additional
communication port such as UART, 12C, SPI, Wi-Fi, Bluetooth LE, and so on, which allows access to the memory.
A bootloader can be used to update the firmware with your application using a communication interface of
your choice. Unlike the debug ports, the developer can limit access to internal memory from the outside. It
allows an alternate path to update the secured code and data but can be just as dangerous as the debug port if
written incorrectly.

Itis common and recommended that all debug ports are disabled, and firmware is updated only with a
bootloader. How the data is transmitted to the device and whether it is encrypted or not is up to the designer.
Listed below are four different secure system strategies for the external part of your security plan. Each of the
pieces to implement these strategies are discussed in the Security features chapter.

+  Firmware updates with a hardware debugger: This is usually not thought of as a secure system, but if
the hardware is installed such that a third party cannot get direct access, then it may be secure. Flash areas
can be blocked from writing so that any internal hack could not change or replace the application. The
device can be put in a SECURE lifecycle stage with the debug port open, which will force the firmware to be
authenticated with a public key each time the device comes out of reset.

+ No access to debug port; bootloader for updates: The debug access ports are disabled so that after the
initial programming, the only way to update the firmware is to provide a bootloader. The security level of
the bootloader is determined by the implementation. The PSoC™ 6 family includes a Crypto block that can
be used to generate the hash, encrypt, or decrypt to implement secured bootloader features. For systems
that do not include an internal crypto block like in PSoC™ 6, Infineon OPTIGA™ embedded security products
can provide a good alternative.

+ Lock down firmware; no updates: Debug access ports are disabled and there is no provision to allow
for bootloading. This may be the most secure, but there is no way to perform bug fixes or add future
enhancements.

+ Hybrid: A custom secure design that allows partial access to the memory via the debug port. This may fit
your custom needs but will require more work and thought.

2.1.2 Internal access

The internal portion of your security plan is how the code and data are protected inside the device. Each
application will be unique depending on how your CPUs are utilized, what the memory requirements are, and
what is running on each CPU.

« No protection: No protection or limits on the CPUs to access all data and code on the device. Because the
code is all from the developer, it is assumed there is no malicious code. There also is no protection from
one CPU firmware bug possibly corrupting the SRAM used by the other CPU.

+ Isolated CPUs: In this model, the two CPUs are totally isolated with perhaps one area of shared
memory. Protection units are used to disallow any accidental reading/writing of data between CPUs.
Communication between CPUs is achieved with shared memory or IPC hardware.

+  Secured CPU: This model uses the CM0+ CPU as the secured processor. In addition to being used for
system calls, CMO+ will be used for all secure data and secure functions. Protection units are configured
and owned by CM0+, so CM4 will not have access to secure data/code unless required by the system design.
This is by far the most secured approach.

Application Note 7 002-21111 Rev. *F
2024-02-27


https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/

PSoC™ 6 MCU designing a custom secured system

afineon

2 System security

2.2

Basic definitions

Before continuing, you must understand some terms that will be used throughout this document. Many of
these terms will be discussed in more detail in the following sections of this application note.

Table 3

Abbreviations and definitions

Chain of Trust (CoT)

Chain of Trust is established by validating the blocks of software starting from
the root of trust located in the ROM. The root of trust begins with the Infineon
code residing in the ROM that cannot be altered.

Code signing

Process of calculating a hash of the code binary and encrypting the hash with a
private key and appending this to the code binary.

Dead access restrictions (DAR)

Determines what resources are accessible via the debug port when in DEAD
mode. DEAD mode occurs if an error is found during the boot sequence. The
DAR are stored in eFuse.

Debug access port (DAP) Interface between an external debugger/programmer and PSoC™ 6 MCU for
programming and debugging. This allows connection to one of three access
ports (AP), cMe_AP, cM4_AP, and System_AP (Sys_AP). The System_AP can access
only the SRAM, flash, and MMIOs, not the CPU.

Digest The output of a cryptographic hash function is often called a message digest

or digest. This digest is then encrypted with a private key to form a digital
signature.

Digital signature

Encrypting of the digest (hash of a data set). For example, the encrypted hash
of the user application.

Elliptic-curve cryptography
(ECC)

ECC is an asymmetric encryption system that uses two keys. One key is private
and should not be shared, and the other is public and can be read without loss
of security. ECC is a more modern method than RSA and requires a smaller key
than RSA for the same level of security.

eFuse

One-time programmable (OTP) memory that by default is 0 and can be
changed only from 0 to 1. eFuse bits may be programmed individually and
cannot be erased.

Factory hash

Calculated hash (SHA-256) of the system trim values and Flash boot. This hash
is truncated to 128-bit (MSbs) and stored in the eFuse prior to leaving Infineon.
This is used to validate that trim values and Flash boot (part of the boot
sequence) have not been compromised.

Flash boot

Part of the boot system that performs two basic tasks:

1. Sets up the debug port based on the lifecycle stage.
2, Validates the user application before executing it.

Flash boot executes after ROM boot.

Flash (User)

Flash memory that is used to store your application code. It is non-volatile by
may be reprogrammed.

Hash A crypto algorithm that generates a repeatable but unique signature for a given
block of data. This function is non-reversible.
IP Intellectual property. This can be both code and data stored in a device.

Inter-process communication
(IPC)

Inter-processor communication. Hardware used to facilitate communication
between the two CPU cores.

(table continues...)
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Table 3

(continued) Abbreviations and definitions

Lifecycle stage (LCS)

The LCS is the security mode in which the device is operating. To the user, it
has only four stages of interest: NORMAL, SECURE, SECURE_WITH_DEBUG, and
RMA.

Memory protection unit
(MPU)

The MPU is used to isolate memory sections from different bus masters.

MMIO

Memory-mapped input/output, usually refers to registers that control the
hardware 1/0.

Normal Access Restrictions
(NAR)

Normal access restrictions determine what memory resources are accessible
via the debug port when in NORMAL mode. The NAR is stored in SFlash.

Protection context (PC)

The PC allows each bus master a security state level from 0 to 15. A bus
master can be assigned a PC value that stays static or that is changed during
application execution. PC provides a more precise way of applying memory
restrictions. PC=0 is a special case which allows any bus master to have full
access to the entire memory space including registers. The PC state works
together with protection units.

Protection units

Hardware blocks that are used to limit the bus master access to the memory
(SRAM, ROM, flash) or hardware (peripheral) registers. They include MPU, PPU,
and shared memory protection unit (SMPU).

Peripheral protection unit
(PPU)

PPUs are used to restrict access to a peripheral or set of peripherals to only one
or a specific set of bus masters.

Protection state

Three possible states: NORMAL, SECURE, and DEAD. Each state may be
configured by the user. The NORMAL protection state configuration is stored in
SFlash, but SECURE and DEAD state configurations are stored in the one-time
programmable eFuse.

Public-key cryptography
(PKC)

Also known as asymmetrical cryptography. Public-key cryptography is an
encryption technique that uses a paired public and private key (or asymmetric
key) algorithm for secure data. It is used to secure a message or block of data.
The private key is used to encrypt data and must be kept secured, and the
public key is used to decrypt but can be disseminated widely.

Public key When using asymmetrical cryptography such as RSA or ECC, a public key is
used to validate firmware that was signed by the private key. It can be shared,
but it should be authenticated or secured so it cannot be modified.

Private key When using asymmetrical cryptography such as RSA or ECC, the private key is
used to sign (encrypt the hash) of firmware after it is built but prior to being
loaded into the device. It must be kept in a secure location, so it cannot be
viewed or stolen.

RMA Return Merchandise Authorization

ROM Read-Only Memory is non-volatile and is programmed as part of the fabrication
process and cannot be reprogrammed.

ROM Boot After a reset, the CMO+ starts executing code that has been programmed into

ROM. This code cannot be altered.

(table continues...)
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Table 3

(continued) Abbreviations and definitions

RSA-nnnn

An asymmetric encryption system that uses two keys. One key is private and
should not be shared and the other is public and can be read without loss of
security. The encryption/decryption is controlled by a key that is commonly
1024, 2048, or 4096 bits in length (RSA-1024, RSA-2048, or RSA-4096).

Secure Access Restrictions
(SAR)

Secure access restrictions determine what memory resources are accessible via
the debug port when in SECURE mode. The SAR is stored in eFuse.

Secure hash

Calculated hash (SHA-256) of the system trim values, Flash boot, TOCs, and
user public key. This hash is generated during the transition to SECURE and
stored in eFuse. This insures that the OEM’s public key has not be corrupted
maliciously or accidentally.

Security plan

The security plan is the set of rules that the designer imposes to determine
what resources are protected from outside tampering or between the internal
CPUs.

Serial memory interface
(SMIF)

A SPI (serial peripheral interface) communication interface to serial memory
devices, including NOR flash, SRAM, and non-volatile SRAM.

Supervisory Flash (SFlash)

Supervisor flash memory. This memory partition in flash contains several
areas that include system trim values, Flash boot executable code, public key
storage, etc. After the device transitions into a SECURE mode, it can no longer
be modified.

SHA-256

SHA-256 is a common cryptographic hash algorithm used to create a signature
for a block of data or code. This hash algorithm produces a 256-bit unique
signature of the data no matter the size of the data block.

Shared memory protection
unit (SMPU)

SMPUs are used to allow access to a specific memory space (flash, SRAM, or
registers) to only one or a specific set of bus masters.

System calls

System calls are functions such as flash write commands that are executed by
the Arm’ Cortex” MO+ CPU (CM0+) from ROM. These system calls may be called
from either the CM4 or CMO+ CPUs, or via the debug ports.

Table of Contentsl

(TOC1) An area in SFlash that is used to store pointers to the trim values, Flash
boot entry points, etc. It is used only by the boot code in the ROM and is not
editable by the designer.

Table of Contents2

(TOC2) An area in SFlash of the PSoC™ 6 MCU that is used to store parameters
and pointers to objects used for secure boot. Locations of two application
pointers (Applicationl and Application2) are stored here, but the second one
is optional. The first pointer, Applicationl, must point to the first executable
user code, which may be the bootloader or just the application. The table of
contents also contains some boot parameters that are settable by the system
designer. A duplicate of TOC2 is written in the adjacent page of flash for
redundancy. This duplicate is called “RTOC2”, If TOC2 is found to be invalid
for any reason, RTOC2 is evaluated. Both these structures are protected with a
CRC, and are part of the Secure Hash. Definition of the TOC2 structure can be
found in section 4.1.
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3 Security features

3 Security features

PSoC™ 6 MCUs has several security features that are used to build a custom secured system. In this chapter,
each of these components will be described. The combination of these features can provide a secured system
that meets most security requirements.

o eFuse

«  Device lifecycle

«  Secured boot sequence

«  Chain of Trust (CoT)

+ Codesigning

«  Protection units and protection context

+  Debug port configuration

The PSoC™ 62/63 family is a dual-core device with a CM0+ and a CM4 CPU. The CMO0+ is usually considered the
secured processor and is the one that performs all system calls and runs the secured boot sequence. The
“main()” function in the user project enables CM4 only after CM0+ has run the boot process. The CM4 is usually
considered the application processor because it can run faster and is more powerful than CM0+. The CMO+ is
the logical choice to configure your secure elements, because it runs before CM4. This allows your application
to have your secure configuration complete before enabling CM4.

Itis also important to understand that in all but the simplest secure system, all these security features work
together:

« eFuse block: System hash values and security attributes are stored in the immutable efuse block.

« Device lifecycle stage (LCS): The LCS dictates how the device boots up and which security attributes to
enable, such as the SAR, NAR and DAR.

«  Chain of Trust: This dictates that the validation of the user application code is linked all the way back to
the device ROM. The code verification is accomplished using the user’s public key stored in SFlash. A hash
is calculated for the SFlash area and stored in eFuse. Any changes in the eFuse, public key, or user code will
be detected and boot will fail.

+  Protection units: These protect or isolate the code and data from different bus masters. They are also
used to secure the hardware such as flash and effuse programming. The user can also protect other
hardware such as GPIOs or communications ports.

+ Debug port: The debug port is initially used for programming and debug of the user application, but
should be disabled after the device is in SECURE lifecycle stage.

3.1 eFuse

eFuses are simple devices but an integral part of security for the PSoC™ 6 devices. There are 1024 eFuse bits
which default to “0” and can only be programmed to a “1”. Once programmed, they cannot be erased back to
“0” ever, not even by Infineon.

Note: When programming eFuse, the Vpp o pin must be connected to a 2.5-volt supply.

eFuse bits are stored in the programming file (intel hex) using the address range ex9070_ee00 to 9x9070_03FF.
This range is virtual and cannot be used for direct read or write operations. The eFuse library uses the offset
value to read 8 bits of eFuse data at a time.

Table 4 identifies the usage areas of interest in the eFuse block including the user area. Note that there is some
difference in the eFuse usage between 15t generation and 2" generation devices. Table 1 defines which family
of parts belong to the 15t and 2" generations devices

Application Note 11 002-21111 Rev. *F
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Table 4 eFuse data

Data eFuse bit eFuse block |Size Notes

addressin byte offset
programming | (read)
file

Secure hash 0x9070_00A0 |0x14 16 bytes (128 fuses) 128 bits of the MSbs of a 256-bit
hash. Created when moving to
SECURE mode.

Secure hash zeros |0x9070_0130 |0x26 1 byte (8 fuses) Number of zeros in the secure
hash. This value is to ensure
that the hash cannot be altered
without being detected.

DAR 0x9070_0138 | 0x27 2 bytes (16 fuses) Dead access restrictions

SAR 0x9070_0148 | 0x29 2 bytes (16 fuses) Secure access restrictions

Lifecycle 0x9070_0158 |0x2B 1 Byte (8 fuses) Lifecycle status

Factory hash 0x9070_0159 |0x2C 16 bytes (128 fuses) 128 bits of the MSbs of the 256-
bit hash. This is generated and
stored before the device leaves
the factory.

Factory hash zeros |0x9070_01E0 |0x3C 1 byte (8 fuses) Number of zeros in the factory
hash. Ensures that the hash
cannot be altered without being
detected.

15t generation parts

User data 0x9070_0200 | 0x40 64 bytes (512 fuses) User eFuse area

2"d generation parts

Asset hash 0x9070_0200 | 0x40 16 bytes (128 fuses) Similar to the factory hash, but it
does not include trim values so it
will be the same for all parts with
the same silicon and firmware
version. (This is generated and
written to eFuse automatically)

Asset hash zeros 0x9070_0280 | 0x50 1 byte (8 fuses) Number of zeros in the asset
hash. Ensures that the hash
cannot be altered without being
detected. (This s calculated and
written automatically)

User data 0x9070_0281 |0x51 47 bytes (376 fuses) User eFuse area
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3.2 Device lifecycle

The device lifecycle is a key aspect of the PSoC™ 6 MCU’s security. Lifecycle stages follow a strict irreversible
progression dictated by programming eFuses bits (changing a fuse’s value from ‘0’ to ‘1’). This system is used to
protect the internal device data and code at the level required by the customer. Lifecycle stages are governed
by the LIFECYCLE_STAGE eFuses and can only be advanced to the next lifecycle state as shown in Figure 1. For
example, once in the SECURE lifecycle stage, the device can never return to the NORMAL or VIRGIN state.

Write
NORMAL
eFuse

User-accessible

stages
Write Write
SECURE SECURE /w
eFuse Debug

eFuse

SECURE w/ Debug

Figure 1 Device lifecycle

3.2.1 VIRGIN

This is the initial lifecycle stage of the device when manufactured. During this stage, trim values and Flash boot
are written into SFlash. Parts in this stage never leave the factory. Once all factory tests are passed and the
factory hash is written, the device will be transitioned to the NORMAL lifecycle stage.

3.2.2 NORMAL

This is the lifecycle stage in which the parts are sent to customers. By default, users have full debug access and
may program all user flash including certain areas in SFlash such as user SFlash, TOC2, and public key. To allow
the OEM to check the data integrity of trims, Flash boot, and other objects from the factory, a hash (SHA-256
truncated to 128 bits) of these objects is stored in eFuse, called the “factory hash”. The factory hash is not
verified during boot, but should be verified before moving to the SECURE lifecycle stage.
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3.2.2.1 Normal access restrictions (NAR)

Access restrictions to the debug ports may be modified in the NORMAL lifecycle state. Normal access
restrictions (NAR) are located in SFlash (ex160e_1aee) and use the same format as the SARs in eFuse. (See
section Appendix C - Debug port access settings for NAR, SAR, and DAR formats) Once set, they can be changed
to be more restrictive, but not less, by the flash write system call.

Note that the NAR settings are not considered secure because a user could alter the NAR by writing a custom
flash write function instead of using the flash write system call. The system calls that write the flash memory
will not allow erasing the bits in the NAR SFlash area.

3.2.2.2 Using NAR to secure a device

If you are considering using NAR to secure a device, you should set up the protection context registers and
move all bus masters (CM0+ and CM4) to a protection context other than 0. This will disallow any direct access
to the flash programming registers, other than the system call infrastructure that will not allow reducing the
security of the normal access restrictions. This should be done preferably by CM0+ at the beginning of the CM0+
application (or bootloader) before running any user code in CM0+ or enabling CM4. This will effectively lock out
any access to the registers required to program internal flash memory and force you to use flash write system
calls to the program flash.

Note: Using the system calls for programming of the NAR values will only allow you to increase the access
restrictions, not reduce them.

If you set the NAR to disable the debug ports and change the protection context to PC # 0, you can protect
access to your internal code and block anyone from accessing the code or debugging. This can be an attractive
option for some applications. If you plan on upgrading your code in the future and have disabled the debug
port, you will need a bootloader and a way to transfer the new code to the device other than the debug port
before setting the NAR bits. One advantage of using NAR to lock out debug is that you can easily program the
bits during runtime and it does not require the 2.5 volts connected to the VDDIOO pin. One reason for
programming the NAR values during runtime is that you could use your project application to disable the
debug ports right before shipping the product after the device has been fully tested.

By default, in the NORMAL lifecycle stage, the user application code is not validated. There is an option to force
your code to be validated with the public key while in NORMAL mode. This is a good way to validate that you
have everything set up correctly before you advance to SECURE mode, because it boots the same way. If you
move to the SECURE lifecycle stage and do not have the public key stored correctly or did not write the TOC2
properly, you can lock yourself out of the part and essentially “brick” the device so it is not usable, and there is
no way to fix it. By using the NORMAL validation feature, you can continue to make changes until you have
everything set up properly, and then you can feel more confident about advancing to the SECURE lifecycle
stage. To force validation in the NORMAL LCS, you must populate the TOC2 structure and add the RSA public
key, just as you would in the SECURE LCS. More details of the TOC2 structure are defined later in the application
note.

Note: In the NORMAL lifecycle stage, even if you sign your application, your system will not be secure. This
is because the secure hash has not been generated and therefore, the NORMAL lifecycle state cannot
verify the public key. See the Code signing and verification section for more information.
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3.2.3 SECURE

This is the lifecycle stage of a secured device. Before the transition to the SECURE lifecycle stage, the following
tasks must be completed properly. Failure to do so could leave you with an inoperable device. The first five
steps may occur in any order, but step six must be the last step. More information on performing these steps is
provided later in this document.

1. Use the factory hash to verify that the device has not been tampered with since it left Infineon. The
device programmer performs this check during the transition to the SECURE lifecycle stage. (See #6
below).

2, Fillin TOC2 including the CRC at the end (cymcuelftool which is included in the ModusToolbox™ install is
used to fill in the CRC).

3. Write the public key into SFlash (See Appendix B - Creating crypto key pairs).

4, Set the SAR and DAR in the eFuse. Once in SECURE lifecycle stage, the access restrictions cannot be
altered (See section Appendix C - Debug port access settings for NAR, SAR, and DAR formats).

5. Program an application into the user flash. Depending on the SARs, a bootloader may be required to
update the code in the future.

6. Transition to the SECURE lifecycle stage by setting the SECURE Lifecycle stage bit. (The CYPRESS™
Programmer tool performs eFuse programming, but the user sets the values in his code.)

In the SECURE lifecycle stage, the protection state is set to SECURE and the SAR are deployed. A secured device
will boot only when the authentication of its Flash boot and application code succeeds.

After an MCU is in the SECURE lifecycle stage, there is no going back. The debug ports may be disabled
depending on your preferences, which means that there is no way to reprogram or erase the device with a
hardware programmer/debugger. The only way to update the firmware at this point is to provide a bootloader
as part of device firmware and provide a way to invoke it.

Code should be tested in NORMAL or SECURE_WITH_DEBUG lifecycle stages before the move to the SECURE lifecycle
stage. This is to prevent a configuration error that could cause the part to be no longer accessible for device
programming and therefore unusable.

Note: You cannot move from SECURE_WITH_DEBUG to SECURE lifecycle stage.

3.2.4 SECURE WITH DEBUG

This is the same as the SECURE lifecycle stage, except with NAR applied to enable debugging. When in the
SECURE_WITH_DEBUG lifecycle stage, the access restrictions are taken from the NAR located in SFlash. Parts putin
this stage cannot be changed back to either SECURE or NORMAL stage; they are most likely discarded or
destroyed after testing. Devices should not be shipped in this stage because they are not secure. It is not
recommended to use this lifecycle stage during development; instead, use the NORMAL lifecycle stage with the
Validate App bits set in TOC2. Only use this Lifecycle stage if you find that your device is not booting correctly in
SECURE and you need to debug the problem.
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3.2.5 RMA

The RMA lifecycle stage is a mechanism to allow customers to return parts that are in the SECURE lifecycle stage
back to Infineon to evaluate if a defect in the device is suspected. When in RMA mode, the debug ports will be
open to allow Infineon to access all hardware and memory. Before switching the device to RMA, you should
erase all proprietary and sensitive data and code in the device by means such as updating the firmware (with
your bootloader).

See Appendix D - Transition to RMA for more details.

3.3 Protection state

Protection state and Lifecycle stage are the same unless there is an error during the boot process or the device
is in the RMA Lifecycle. If there is an error during boot, the device will be moved to the “DEAD” protection state.
Access to the debug ports in the DEAD protection state is defined by the Dead Access Restrictions (DAR).

VIRGIN
(Factory Only)

LifeCycle Set?

NORMAL NORMAL Error
LifeCycle? (N AR) - 0=

SECURE SECURE
LifeCycle? (S AR)

Note: If device is in RMA Lifecycle stage, only the
SYS_AP will be open with SRAM and IPC register
access. It will wait for a system call to “Open for
RMA” in which it will have the same access as in

VIRGIN LCS.
Figure 2 Protection state transitions
3.4 CMO+ boot sequence

Only the CMO+ CPU is started after a reset. It is up to the OEM’s CM0+ code to enable the CM4 after the boot
sequence, if the default CMO+ startup code is not used. The default CMO+ is a binary that is provided, if the user
doesn’t need to use the CMO+. It is not recommended to use for a secure system. The boot sequence differs
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depending on which lifecycle stage the device is in. As expected, the SECURE lifecycle stage is the only boot
sequence that maintains a Chain of Trust (CoT). Figure 3 shows the different paths of the four basic boot
sequences.

1. NORMAL (no validation, no code security)

2. NORMAL with Validate (no code security)

3. SECURE_WITH_DEBUG (debug only, not intended for final product)

4 SECURE
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Boot Sequence (CMO0+)

C CMO0+ comes out of reset and performs basic housekeeping tasks )

oy Y

Cycle NORMAL NORMAL SECURE/
Stage (w/ Validate) SECURE with Debug
1
+ Data pointed to in TOC (1 & 2)
*Trim Values
* Unique ID
SFlash Validation _ Flash Boat Codo
(HASH Calculation) Data Public Key (OEM)

[ Execs in ROM ] -

Secure_HASH (eFuse)
Used in Secure mode boot.

Error
(Dead Mode)

Note:

In SECURE mode, the entries of both
TOC 1 and TOC 2 will be included in
the HASH calculation.

Invalid

y

Jump to Flash Boot

Jump to Flash Boot

!

Public KEY
(OEM) Validate TOC First App 5
(Validate Digital Signature, ata
Data RSA-2048 ) User App Code
User App [ Execs in SFlash ]
Digital Signature
Note:

The OEM generates or edits the
following fields

* SECURE_HASH

* Application w/Digital Signature
* Public_KEY (OEM)

*TOC 2 (Table Of Contents)

Invalid

Valid
Signature

Error
(Dead Mode)

DAP Configuration:
NORMAL: NAR F
SECURE: SAR

Configure DAPs Note:

The colors of the boxes
indicate what type of
memory either the data or

SECURE with Debug: NAR

In SECURE mode DAP is
configured based on the

: Note: i i
SAR, but GPIO drive mode CMO+ User App User CMO+ code executing code resides.
's left to OEM. (User Flash) enables CM4
Figure 3 PSoC™ 6 CMO+ boot sequence
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3.4.1 NORMAL lifecycle boot

After reset and initial hardware configuration, Flash Boot (pre-programmed into SFalsh) configures the DAP
port with the NARs stored in the SFlash. The GPIOs used for the debug interface are configured to interface with
the debugger if any of the three debug access ports are enabled (CM0+, CM4, System). By default, it is assumed
that the user code starts at ex1000_oeee (beginning of user flash) and the first two vectors are the stack pointer
and the reset vector. These values are checked to verify that they contain values that are in the available SRAM
and flash respectively. If these values are outside of these memory ranges, CM0+ will jump to DEAD mode and
remain in an infinite loop, and no (user) code will be executed.

3.4.2 SECURE lifecycle boot

When in the SECURE lifecycle stage, the following occur:

1. CMO+ validates the SFlash by calculating a hash of the trim values, Flash boot code, user public key, etc.

2, CMO+ compares this hash with the precalculated secure hash stored in the eFuse that was generated
when the part was advanced from NORMAL to SECURE lifecycle stage by the OEM.

+  The calculated SHA-256 hash (256 bits) is truncated to its most significant 128 bits which is the same
as the stored hash in the eFuse.
3. If the calculated hash matches what is stored in the eFuse, the trim (calibration) values from the SFlash
are used to configure the hardware for optimal operation.
4, CMO0+ executes Flash boot (in the SFlash) and validates the Table of Contents2 (TOC2). The TOC2
contains information about the location of public key, start of user code, application format, user
configuration options, etc. It also contains a 16-bit CRC for validation. One of the following occurs:

a. If either the secure hash or TOC2 validation fails, CM0+ moves to DEAD protection state and
remains in a continuous loop until the device is reset. This guaranties that only verified code will
be executed, and no user code will be executed if there is a possibility that the device has been
compromised.

b. If the secure hash and TOC2 are validated, the debug access ports are configured to the values
stored in the SARs bytes in the eFuse. The GPIO pins used for the debug port on the device are
left in their default tristate mode and will not communicate to the debugger or programmer in
this state, even if the SAR defines all ports to be open. The 1 M/512 K/256 K flash parts provide an
option in the TOC2 to automatically configure the debug GPIO for debug operation. This allows
you the flexibility to configure the secure hardware before the debug ports allow a connection.
Your application can control the access dynamically if need be. Example code to enable the debug
port is presented later in this document.

Note: The SAR bytes, public key, and TOC2 are written into the device prior to moving from NORMAL
to SECURE lifecycle stage. Once in the SECURE lifecycle stage, these values cannot be modified.

5. The system has now been fully validated and the debug modes have been configured to the designer’s
requirements. A header prefix (see section 4.2) was added to the user code that contains information
such as number of CPUs (2 for PSoC™ 62/63) and the starting location for each CPU’s application code.
Flash boot checks this header to determine the location where the user CM0+ code starts.

6. CMO+ jumps to the CMO+ user project.

The CMO+ user code that is first executed after Flash boot does not have to be the main application. It could in
fact be a bootloader that manages updates for either CM4 or both CM0+ and CM4. Also, this may be a good
place to implement your application-level security by programming protection units and the protection
context. See Appendix E - Protection unit configuration for more details.
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3.4.3 SECURE_WITH_DEBUG lifecycle stage

This lifecycle stage operates just as the SECURE lifecycle stage, except that it uses NARs so that you can debug
your device before moving to SECURE mode. Once you have moved to SECURE_WITH_DEBUG mode, you CANNOT
move back to NORMAL or to SECURE lifecycle stage. Devices in this stage should never be shipped to the end
customer. NORMAL lifecycle stage with validate is a much better step to validate your key generation and code
signing. In SECURE_WITH_DEBUG, you can change your application, but not SFlash which includes the private key
and TOC2.

3.4.4 NORMAL lifecycle with validate

This is the NORMAL lifecycle stage with the option to validate the first code. It operates just as the SECURE
lifecycle stage, but skips the secure hash validation, uses NAR instead of SAR, and configures the debug GPI0s
for communication with the debug hardware before executing the user code.

This lifecycle stage is useful to verify that your key generation and code signing process is working properly. If
you find a problem, it is easy to debug, and you can erase the entire device and start over if a problem is found.
Make sure that you have not set the NAR to be too restrictive or enabled it at all so you can debug the problem.
Once your key generation and code signing are validated, you are much less likely to have problems switching
to the SECURE lifecycle stage. To enable code validation, you must create a valid TOC2 and set the appropriate
bits in the Flash boot parameters. (See section 4.1 for details of TOC2.)

3.4.5 Debug boot errors

If there is an error during the boot sequence in NORMAL or SECURE lifecycle stage, the device will enter the
DEAD state in which CMO+ stays in an endless loop. If the device was in the SECURE lifecycle stage, the device
will change the protection context to PC=2. If in the NORMAL lifecycle stage, the PC value remains at PC=0.

Whether you can debug the device or not depends on your settings to access in the DEAD state. During
debugging, you should leave full access to the debug ports. To determine what caused the boot sequence to fail
and enter the DEAD state, read the value of IPC (#2) data register. An error code with the failure ID will be
written into that register. See Appendix E - Protection unit configuration for boot sequence error table.

3.5 Chain of Trust (CoT)

At the beginning of the Chain of Trust, must be immutable code that cannot be altered. This firstimmutable
code is referred to as the “Root of Trust” (RoT). The initial ROM code validates the Flash Boot code in SFlash to
verify that it hasn’t been modified, prior to any code execution in SFlash.

Flash boot, trim constants, and the Table of Contentsl (TOC1) are located in SFlash (Supervisory Flash) and are
restricted from being reprogrammed in either NORMAL or SECURE lifecycle stages.

The SFlash area is validated with a Factory_HASH value stored in the eFuse. The Factory_HASH code is not used
during the boot sequence in NORMAL or SECURE lifecycle stages, but is used to validate the part before moving
to the SECURE lifecycle stage. This ensures that the Flash boot code, trim values, and the TOC1 has not been
tampered with after the MCU has left Infineon. If the Factory_HASH has been corrupted, Infineon should be
contacted immediately. See Appendix F - Debug codes for failed boot sequences.

After the transition from NORMAL to SECURE lifecycle stage, all blocks in the SFlash, including the public key
area and the TOC2, are validated with the secure_HASH each time the device boots. This secure hash is stored in
the eFuse and cannot be changed without detection. If an error is found while validating the SFlash, the device
will abort the boot sequence and enter a DEAD state. Figure 4 shows the CoT from the perspective of data and
code validation.
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eFuse (OTP)

Secure_HASH Public Key and TOC 2 are

written prior to transition to

| |
[ Factory HASH | SECURE LCS and can t be
| SECURE DAP Configs |
| |

changed afterwards.

Life Cycle Stage
eFuse cells can be programmed :__________j
from 0 to 1, but not back to 0. | User Flash :
Public Key | | |
_ | CMO+ Code I
Factory HASH (NORMAL LCS) = | Public Key !
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Code Secure_HASH (SECURELCS) I SRR |
(Fixed) g Flash Boot | D'gitar Signature § |
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Factory Hash is only used to & Misc Application Code with

validate that the device has not Public Key in SFlash.
been modified before the

transition to SECURE LCS. In SECURE LCS, Flash Boot,
Trim values, TOC1, TOC2, and
*LCS = Life Cycle Stage Public key are validated with

Secure_HASH in eFuse during
each boot cycle.

Figure 4 Basic chain of trust

At this point, the entire SFlash is now trusted because its validation is based on the memory (eFuse) that
cannot be modified without detection during SFlash validation in the ROM.

The (OEM) public key, which is locked into the SFlash, is secure and cannot be changed without being detected
as well. It is used by Flash boot to validate the next step in the boot process. Flash boot validates the code in
the user application block, which includes a digital signature at the end of the code block. Flash boot uses the
SHA-256 hash function to calculate the digest of the user application. The digital signature attached to the user
application is encrypted using a private key that is associated with the public key stored in the SFlash. The
encrypted hash uses RSA 2048-bit encryption.

The calculated and the stored digest (decrypted digital signature) are then checked to see whether they match.
If they match, the user application has been verified.
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3.6 Code signing and verification

In the Chain of Trust (CoT) section, code verification was mentioned but with not much detail. In this section,
we will dive into the process of signing a block of code so that it can be verified during runtime. Infineon
supports the signing of application code using the CyMCUEIfTool which is downloaded with ModusToolbox™
software.

The encryption method used is PKC (public key cryptography) that has a private and public key pair. You must
ensure that the private key is kept in a secure location, so that it never gets into the public domain. If the
private key is exposed, it will endanger your system’s security. Companies must create a method in which very
limited access to the private key is allowed.

The public key, on the other hand, can be viewed by anyone. The only requirement is that the public key must
be validated or locked in such a way that it cannot be changed, or so that any modification to the public key
can be detected. In this example, the public key is stored in the SFlash and verified with the Secure_HASH as
defined in the Chain of Trust (CoT) section. These private and public keys can be generated with common
encryption libraries such as OpenSSL.

Do the following to transition a PSoC™ 62/63 device to the SECURE lifecycle stage and use code signing:

1. Fillin TOC2 and add the 16-bit CRC at the end of TOC2 (SFlash).

2, Fill in the RSA-2048 public key (SFlash).

3. Use standard CYPRESS™ application format (user flash) at the beginning of the application (See section
4.2 for definition).

4, Sign your application bundle and place the 256-byte (2048 bits) digital signature at the end of the code
(user flash).

5. Enable NORMAL lifecycle code verification or move to SECURE lifecycle stage.

It is HIGHLY recommended to test the code verification in the NORMAL lifecycle stage before switching to the
SECURE lifecycle stage. In the NORMAL lifecycle stage, if something is incorrect with the code signing process,
you can reprogram the TOC2, public key, and update your application. Once you switch to the SECURE lifecycle
stage, you cannot alter the TOC2 or update the public key. You may not be able to change your application with
the programmer if you closed your debug ports and your bootloader is not yet implemented.

For more information on generating and using the private and public keys, see Appendix A - Code example of a
security application template.

3.6.1 Code signing

To verify the user application, a digital signature is created and appended to the end of the code during build
time. The code itself is not encrypted but the digital signature is the encrypted digest. The digital signature is
generated by encrypting the digest with the RSA-2048-bit algorithm. The digest is generated by running the
user application binary through a SHA-256 hash function. This type of code signing is used for both RSA and
ECDSA algorithms, but PSoC™ 62/63 Flash boot code only supports RSA-2048. This method guarantees that a
third-party without access to the OEM’s private key cannot properly sign the application code (see Figure 5).
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Figure 5 Generation of digital signature

3.6.2 Code verification

A secured system must be able to verify that its application code was indeed generated from a known source
and detect if it has been modified by a third-party or corrupted. If the verification fails, the execution must take
a known path to a safe state.

3.6.2.1 Parts of code validation

Verification requires three parts: application code, digital signature, and key pair (public and private). The
application code and digital signature come as a pair; the public key is stored in the device such that it cannot
be changed, without detection.

« Application code: This includes both executable code and constants that makes up the firmware in an
embedded system. This code usually resides in the flash memory that can be modified at one time or
another. Therefore, you must be able to determine whether this code is from a known source (OEM) and
has not been corrupted either by accident or by a malicious event.

+ Digital signature: A digital signature is the encrypted digest (hash) of the application code generated
at the OEM. The digest of the application code is encrypted by the private key to generate the digital
signature. The hash algorithm used in this case is SHA-256. The digital signature is then used to verify that
the application before being executed.

«  Key pair: This asymmetric key pair contains both the private and public keys. In the system described in
this application note, the public key is stored on the device and the private key is secured by the OEM. The
public key must be secured in one of two ways (the second option is the most likely one for an embedded
system):

- Amethod to verify the source of the key. This can be accomplished with some type of communication
with a known source or server. This is not practical for devices that cannot easily communicate with a
known server when required.

- Have the key protected such that it cannot be changed, or that you can determine if it has been
modified. In the PSoC™ 6 devices, a hash is calculated from the areas containing the public key, Flash
boot code, and trim values. This hash is then stored in one-time programmable eFuse and referred to
as Secure_HASH. The hash is verified before the public keys is used.
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3.6.2.2 Code verification used by PSoC™ 62/63 MCUs

The device bootup code “Flash boot” uses RSA to verify the first user code. The application binary code block
(application bundle) includes a digital signature that is created during the build time. To verify the application
code, a hash function (SHA-256) is calculated across the binary code block. Next, the digital signature is
decrypted using the stored public key to reveal the original digest generated when the application was
generated at the OEM location. The calculated digest and the decrypted digest (from digital signature) are
compared to verify they are equal. If they are an exact match, the code is verified (see Figure 6).

ECDSA is another common algorithm used to verify application code. It is similar to RSA, but instead of
decrypting the digital signature and comparing it to the calculated hash, the calculated digest, digital
signature, and ECDSA public key are used to generate a pass or fail. This is a common method used by MCUboot
to verify the application code. Figure 6 shows the comparison between RSA and ECDSA.

RSA Code Verification (Flash boot) ECDSA Code Verification (MCU Boot)
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Figure 6 Application verification

3.7 Protection units

This section provides a brief description of how the protection units work and how to use them. For a more
detailed description of protection units, read the “Protection Units” chapter in the PSoC™ 6 MCU Architecture
TRM (Technical Reference Manual)for your device.

PSoC™ 6 has several bus masters that all share a single bus that interconnects the flash, SRAM, ROM, GPIOs, and
peripheral control registers. The bus masters include the two CPUs (CM0+ and CM4), DMA controllers (Data
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Wire), crypto unit, and the test controller. Bus arbitration hardware keeps the bus masters from bumping into
each other, but the protection units keep them from reading and writing into each other’s memory space.

Protection units can be programmed to allow only specific CPUs and other bus masters to access only
predefined memory segments and peripherals. If a bus master attempts to use a section of memory not
allowed by the protection unit, a bus fault will occur. Because the two CPUs (CM4 and CM0+) share the same
memory space in the PSoC™ 6 MCUs, the protection units guarantee that one CPU cannot affect the memory or
peripherals allocated to the other if needed. Not all memory or peripherals must be allocated to just one CPU;
by default, the entire memory space is shared between the two CPUs and sections can remain that way if
desired.

Protection units can also be used to isolate memory for different tasks that run concurrently in an RTOS.
Different sections of a boot process may also be another example of securing sections of memory. For example,
you may want your bootloader to have access to write to the flash in the user application area, but deny the
user application from overwriting writing code that is executing. Protection units can be configured to do just
that. Figure 7 shows how the different protection units (SMPU, MPU, PPU) are connected relative to the bus
masters, peripherals and system bus (AHB).

Bus masters

DMA Test
CMo+ CM4 Crypto (Datawire) | | controller
[ AmwPU [ Am MPU
1 1 A A ;

Flash SRAM MPU: Memory protection unit

SMPU: Shared memory protection unit
PPU: Peripheral protection unit

AHB ]

A A

9 = D

>
»

¢

)
»ll T

[—y

[
y

GPIO Fixed- Programmable
function analog and digital
blocks blocks
Figure 7 Protection units with respect to the overall system

PSoC™ 6 has four types protections units:

+  SMPU - Shared memory protection units

«  MPU (Arm’) - Memory protection unit that are part of the CPU IP

«  MPU (Infineon) - Memory protection unit for test controller and crypto block
«  PPU - Peripheral protection unit (fixed and programmable)

3.7.1 SMPUs

The SMPUs are capable of protecting any section of the bus memory space, but they are meant to be used for
segments of the ROM, SFlash, user flash, and SRAM. The CPUs (CMO+ and CM4) each contain an Arm” MPU that
is part of the Arm’ IP. The Arm” MPUs do not support protection context (will discuss this later), secure, or
privileged modes. but they are primarily meant to be used in conjunction with an RTOS or other operating
systems.

Two Infineon MPUs are used in the crypto block and the test controller (debug interface). For more information
on these MPUs, see the Technical Reference Manual (TRM) for the device you are using.
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3.7.2 PPUs

There are two different types of PPUs: fixed and programmable. Fixed PPUs are assigned a specific block of
registers, usually for a single IP block such as a TCPWM, SCB, or SAR ADC. The address and region size are fixed
and cannot be changed.

Programmable PPUs are similar to the SMPUs in that they can protect any region of peripheral device address
space. They are meant to protect registers in a specific block that are not covered by the resolution of the fixed
PPUs.

3.7.3 Protection unit configuration

Protection units have several parameters, besides just address and range. The following is a list of attributes
that must be met when evaluating if the memory access is permitted by a bus master.

Table5 Protection unit parameters

Parameter Description

Address Where the region starts. It must be aligned to the region size.

Region size Size of the region which is a power of 2 from 256 bytes to 4 GB.

Sub regions Disables any of 8 equal spaced regions. If Region size is 256, each sub region
would be 32 bytes, each which can be disabled.

User permission Read/Write/execute for user level access.

Privilege permission Read/Write/Execute permission for CPU privilege mode.

Secure This bit is not directly associated with the NORMAL/SECURE lifecycle stage;

it can be set for a bus master. You can use this bit to designate one of

the bus masters as the “secure” processor, most likely the CMO+. This bit
adds one more level of designation. For example, you could have two bus
masters (CM0+ and CM4) both set to protection context equal 1, but only the
designated secure bus master may have access to a region designated by a
protection unit.

PcMatch This bit is valid only if two or more of the protection structures match the
same address range that the bus master is attempting to address. If two

or more protection structures match the bus master’s address request, the
protection system will evaluate these structures from highest index (15) to
lowest index (0). It will continue to evaluate these structures until if finds
PC_MATCH = 9, at this point it will complete the evaluation of the present
structure and not evaluate any further structures, even if the address or PC
values match the request. If the present protection structures PC_MATCH = 1, it
will continue to the next structure that has a valid address range.

PcMask Bitmap of what PC value may access memory region defined by this
protection unit.

All the protection units, except for the MPUs that are part of the Arm’ CPUs, have a master protection structure
associated with it. The master protects the PPU (slave) from being altered by any bus master that should not
have access. In a sense, the master assigns an owner which is the protection context. See the next section for
more information.

Although the two CPUs share the same bus, they run totally independent code. The code running in the two
CPUs can even be written by two different companies, depending on how you structure your device. For
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example, the system calls in the PSoC™ 6 are written by Infineon, but the rest of the code will be written by the
customer.

The bootup ROM enables protection units to protect the stack area and the registers that control writes to the
flash and eFuse. This is important for the following reasons:

1. Prevent unintended modifications to the flash by the code in SECURE mode.

2, Protecting the flash control hardware forces the user to use systems calls to write to the flash which is
guaranteed to optimize lifecycles with maximum retention.
3. Protected system calls adhere to the SMPU settings to determine who has permissions to change the

flash in SECURE and NORMAL modes.

A common configuration for a secure system is to have CM0+ be the secure processor and CM4 be the main
(non-secure) application processor. The two CPUs should operate independently of each other with only a
controlled interface between them.

Using protection units, the memory spaces can be totally isolated from each other although they share the
same memory bus. Peripherals and GPIOs, such as flash control, can be reserved by one CPU so it cannot be
accessed by the other CPU. The controlled interface between the two CPUs as mentioned before can be the
shared SRAM or in the case of system calls, a combination of shared SRAM and the IPC interface.

3.7.4 Bus masters

In PSoC™ 6 MCUs, a bus master is any block that can directly access the SRAM or flash without the aid of another
bus master. There are at least six bus masters in the PSoC™ 6 MCUs, and maybe more in future devices. In this
document, a mention of bus master includes the CM0+ and CM4 processors. Table 6 shows the bus masters and
important configuration registers.

Table 6 Bus masters in PSoC™ 6 MCUs

Master # Bus master Master Protection Context | Master Control register
Control register

0 CMO+ processor PROT_SMPU_MSO_CTL PROT_MPUO_MS_CTL

1 Crypto block PROT_SMPU_MS1_CTL PROT_MPU1_MS_CTL

2 DataWire 0 (DMA) PROT_SMPU_MS2_CTL Inherits settings from the CPU

3 DataWire 1 (DMA) PROT_SMPU_MS3_CTL Inherits settings from the CPU

14 CM4 processor PROT_SMPU_MS14_CTL PROT_MPU14_MS_CTL

15 Test controller PROT_SMPU_MS15_CTL PROT_MPU15_MS_CTL

The Master Protection Context Control registers (PROT_SMPU_Msx_CTL) are key to making protection units
function. They are used to configure each bus master with the appropriate attributes that the protection units
use to determine access. The protection unit library contains the Cy_port_configBusMaster() function that can
be used to configure these registers.

The Master Control register for each bus master controls the active protection context. The DataWire blocks do
not have an associated register because they inherit their attributes from the CPU. The protection unit library
(PROT) includes the cy_Prot_setActivePc() function to set the active protection context for the bus master. This
function will only allow you to set a legal protection context for the device. Each device has a mask register that
determines which PC (protection context) value can be assigned for that bus master. Documentation for all
ModusToolbox™ (PDL) libraries may be found at PSoC™ 6 Peripheral Driver Library.
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3.7.5 Protection contexts (PC)

Understanding how a protection context (PC) works is mandatory to configure the protection units. A
protection context is similar to groups in a computer system while the bus masters are users in those groups.
Each bus master (user) can belong to a subset of all possible PC values (groups), but can only be assigned one
PC value at a time. PSoC™ 6 family devices support PC values of 0 through 7.

A bus master has a mask of what PC values it can be assigned, and the current PC value. At any time, the bus
master can change its current PC value to one enabled in the mask, not to a PC value not in the mask. If a bus
master’s PC mask enables PC values of 1,2, and 3, and an attempt is made to change the PC value to PC=4, an
error will occur and the PC value will not be changed. Without this feature, any bus master could just change its
PC to any value.

A PCvalue of 0 is a special case. If a bus master has a PC=0, it may access any memory location without causing
a page fault no matter how the protection units are configured. Think of it as super user mode. By default, all
bus masters are set to PC=0 after reset. After all protection units are configured, all bus masters should be
changed to a PC value other than 0 to make sure that the protection/security configuration cannot be altered.

Protection units are not assigned to bus masters, but instead you select which protection contexts are valid to
access the region specified by the protection unit. Each protection unit has a PC mask that determines which
PC values are accepted. During configuration, determine which PC values should have access to the region
specified by the protection unit.

For example, if an SMPU was set up with a PC mask that allowed PC values of 4 and 5, bus masters with a PC
value 4 or 5 that met all other criteria could access the region specified by the SMPU. A bus master with a PC=1
cannot access the region specified by this SMPU no matter it met all other criteria.

One or all bus masters can share the same protection context, or they may all be different. For example, sharing
the SRAM with everyone but blocking any CPU from executing the code in the SRAM. A bus master with a PC=0,
always has full read/write/execute to the entire memory space no matter the configuration of any protection
units.

Although a bus master PC mask may allow several PC values, the currently selected PC value is the only one
that matters when accessing a protected memory area. For example, CM4 (bus master) had a PC mask that
allowed PCvalues 1,2, and 3 and had a current PC value of 3. If it attempted to access a region protected by an
SMPU that only allowed 1 or 2, the access would fail and cause a hard fault because the bus master’s current
value was not 1 or 2. If CM4 had changed its protection context to 1 or 2 before accessing the region, the
operation would work without error.

CMO0+ is the only bus master that can switch back to PC=0. The system calls revert CM0O+ back to PC=0 each time
the system call ISR is executed. It does this by setting up cPuss_cme_pce_HANDLER with the address of the system
call ISR. When one of the three IPC channels (0, 1, or 2) causes an NMI (non-maskable interrupt) interrupt, CM0+
is automatically switched to PC=0, where it will execute the system call and then revert to the original PC value
upon return of the of the interrupt. 15t generation parts can do this just for PC=0, but 2" generation parts can
be configured to automatically switch to PC values 1, 2, and 3 with an ISR.

See register description in the respective TRMs for CPUSS_CM@_PC1_HANDLER, CPUSS_CM@_PC2_HANDLER, and
CPUSS_CM@_PC3_HANDLER.

3.7.6 SMPU/PPU master

Protection units are divided up into a slave and a master. The slave defines the memory or register space,
protection parameters, and what PC values have access. The master protects the slave structure from
accidental or intentional modification of the slave structure. There is always one master for each slave
protection unit structure and therefore has a fixed address and region area that is only readable. After all slave
structures are configured, it is best to own all masters by a single PC value, such as PC=0. This way after the bus
masters have all be changed to PC # 0, the system protection unit configuration is fixed.
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Figure 8 Protection unit slave/master

3.8 Debug port configuration

See Appendix C - Debug port access settings for register and bit level definitions.

Attention: Configuration of the debug ports and the lifecycle stage consists of programming the system
eFuse bits. The eFuse bits are one-time programmable and once set cannot be erased. This
means that if you disable the debug ports by changing the lifecycle stage, there is no way to
change it and you cannot re-enable the debug ports. If a bootloader has not been installed, you
will not be able to program the device or update the code.

Attention: ALWAYS program your application into the device before changing the debug ports or changing
the lifecycle eFuse bits. If you are using a bootloader, verify its operation thoroughly before
changing these eFuse bits. Once you advance to SECURE mode, there is no going back, and you
cannot change your eFuse settings afterwards.

3.8.1 Debug port architecture

The physical interface to the debug port is the same as many other Arm’-based devices. It consists of either 3-
pins for SWD, serial wire debugger (SWDCLK, SWDIO, nTRST) or 5-pins for JTAG (TMS, TCLK, TDI, TDO, nTRST).
When the debugger is connected, it negotiates whether it will communicate via SWD or JTAG. Most of the
development tools use the SWD interface.

There are three debug ports on the PSoC™ 62/63, CM4 CPU access port (CM4-AP), CMO+ CPU access port
(cme+_AP), and the system access port (sYs_AP). The CM4-AP and CMO+_AP are primarily used for debugging the
individual CPU. When connecting to either of the CPU access ports, the debugger has access to the CPU’s debug
registers such as the breakpoint registers and has full access to anything that the CPU has access to through the
CPU. The SYS-AP does not have access to the CPU debug registers, but may access any memory or registers in
the memory map. The debugger/programmer may connect to any of the three debug ports.
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______________ Debug Pins ————————
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Figure 9 PSoC™ 6 debug port hardware

Any combination of these debug ports may be enabled or disabled. When talking about the debug ports,
disabling the port is not the exactly the opposite of enabling the port. There are individual bits that control
“Disabling” and “Enabling” the port. When a port is disabled, it is done during bootup in the ROM and the bit
cannot be changed via the debug interface or the internal CPUs. This ensures that if a debug port is disabled, it
cannot be re-enabled accidently or maliciously.

In the NORMAL lifecycle stage, if the ports are not disabled, they will be automatically enabled, and the GPIO
pins will be configured to interface with a debugger. In the SECURE lifecycle stage, if you do not disable the
debug ports, the debug ports will be enabled, but the GPIO pins used for debugging will not be configured to
interface with a debugger, you must do that in the application code. The reason for this is so that the user
application can determine during runtime, when or if the access ports will be available. This adds another level
of flexibility to the SECURE lifecycle stage. There is an option for the 15 generation parts to automatically
configure the GPIO pin, see section 4.1 Table of Contents2.

There are three different access port restriction settings:
«  Secure access restrictions (SAR)

«  Normal access restrictions (NAR)

+ Dead access restrictions (DAR)

The NAR and SAR are used to set up the debug port restrictions for SECURE and NORMAL lifecycle stages
respectively. The DAR are used in the SECURE lifecycle stage if there is an error during the secure boot process.
This could occur if the memory has been corrupted, an incorrect public key is used, the code is signed
incorrectly, or the TOC2 is corrupted.

The SAR and DAR are stored in the eFuse which cannot be erased once set. These restrictions must be set
before entering the SECURE lifecycle stage. Once in SECURE lifecycle stage, the SAR and DAR cannot be altered.

The NARs are stored in the SFlash and are protected only by the system call firmware which ALWAYS runs with a
protection context equal 0. The system call functions allow you to increase the NAR security, but not to reduce
it. It is possible to write code to bypass the system call functions to reprogram the SFlash where the NAR are
stored. To prevent this, make sure that all bus masters, including CMO+ and CM4, have their protection context
set to other than the default of 0. Protection units have already been configured to protect the Flash
programming registers, so by changing the protection context to other than 0, only the system calls can modify
the SFlash or flash, and these functions check protection unit settings.
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One advantage to using the NAR is that it is stored in the SFlash, you do not need a 2.5V supply on VDDIOO to

program them.

Table 7

Access restrictions

Access restrictions

Where stored

Immutable?

Active lifecycle
stage

Notes

Normal (NAR)

Protected SFlash

No

NORMAL

May be altered with
internal firmware but
can be protected using
protection context.

Secure (SAR)

eFuse

Yes

SECURE

Cannot be altered.

Dead (DAR)

eFuse

Yes

SECURE

Cannot be altered; not

valid in NORMAL
lifecycle stage

These restrictions are
implemented when the
device does not boot
properly, such as
corrupt TOC2 CRC, or
invalid application
signature.

Note: The debug ports should be totally disabled when in the SECURE lifecycle stage for the best security.

3.8.2

The SYS-AP is notably different than the CM0-AP and CM4-AP. It provides direct access to all system memory
and memory-mapped I/0 (MMIO) by default. A programmable memory protection unit (MPU) is attached
between the SYS-AP and the AHB. It can be configured to limit access to sections of the flash, SRAM, and MMIO
registers.

By default, this MPU is disabled, but you can enable it and provide limited access to the memory instead of all

or nothing. Both the flash and SRAM are configured the same way as a portion of the available memory range,
starting at the lowest address. See Appendix C - Debug port access settings for register and bit level definitions.

System access port (SYS-AP)
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4 Project configuration

As you see, building a fully secure system with a CoT is more complicated than generating a simple application.
Instead of just the user code, the hex file must contain several other pieces of data/code normally not required
in a simple (non-secure) system. The following are the memory sections that will need to be programmed when
creating a secure system with application authentication.

+ Lifecycle stage and DAP configurations (eFuse)
«  Public key (SFlash)

« TOC2 (SFlash)

«  CYPRESS™application header (user flash)

«  User application block (user flash)

«  Digital signature (user flash)

Hex File

DAP configs

Lifecycle stage

Public key

TOC2
( SFlash)

CYPRESS app header

User application code
(CM0+ and CM4)

Digital signature

Figure 10 Secure system hex file configuration

The linker files in ModusToolbox™ define the memory locations specifically for the public key and TOC2 as well
as the NAR. This makes it easy to place the data where it is expected in memory. The code snippet below is from
a GNUGCC linker file.

sflash_nar (rx) : ORIGIN
Restrictions (NAR) */
sflash_public_key (rx) : ORIGIN

0x200 /* SFlash: Normal Access

0x16001A00, LENGTH

0x16005A00, LENGTH = 0xC00 /* SFlash: Public Key */

sflash_toc_2 (rx) : ORIGIN = Ox16007C00, LENGTH = 0x200 /* SFlash: Table of Content # 2 */
sflash_rtoc_2 (rx) : ORIGIN = Ox16007E00, LENGTH = 0x200 /* SFlash: Table of Content # 2
Copy */
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4.1 Table of Contents2 (TOC2)

TOC2 is used to point to the location of the first and second executable applications. It has a redundant copy
(RTOC2), each with its own CRC for validation. Each copy of TOC2 is on a separate flash page so that if one is
corrupted during writing, it is unlikely that the other is corrupted. Flash boot uses the first one with a valid CRC.
If both fail CRC validation, Flash boot will remain in a loop, ready to be reprogrammed if in the NORMAL
lifecycle stage, orin a DEAD state if in the SECURE lifecycle stage. See the code snippet below for the definition
of the TOC2 structure.

/* Table of Content structure */
typedef struct{
volatile uint32_t objSize; /* Object size (Bytes) */
volatile uint32_t magicNum; /* TOC ID (magic number = 0x01211220 ) */
volatile uint32_t userKeyAddr; /* Secure key address in user Flash (optional) */
volatile uint32_t smifCfgAddr; /* SMIF configuration structure (optional) */
volatile uint32_t appAddril; /* First user application object address */
volatile uint32_t appFormatl; /* First user application format */
volatile uint32_t appAddr2; /* Second user application object address (optional) */
volatile uint32_t appFormat2; /* Second user application format (optional) */
volatile uint32_t shashObj; /* Number of additional objects to be verified(Secure-HASH)
*/
volatile uint32_t sigKeyAddr; /* Signature verification key address */
volatile uint32_t addObj[116]; /* Additional objects to include in Secure-HASH */
volatile uint32_t tocFlags; /* Flags in TOC to control Flash boot options */
volatile uint32_t crc; /* CRC16-CCITT */
}cy _stc_ps_toc_t;

Table 8 TOC2 paramter definitions

Parameter Size Description

objSize 32-bit number This is the flash row size (512 bytes) minus the size of
the crc (4 bytes), which is 508.

magicNum 32-bit value This is a magic number to help to verify the structure
quickly. A valid TOC2 will always have the value
0x0121_12260.

userKeyAddr (optional) 32-bit value This is a pointer to an optional area of additional key
storage. This is optional and may be zero. If used to
store keys that should not be changed, it should be
added to the blocks that are hashed.

smifCfgAddr 32-bit Address Null terminated table of pinters representing the SMIF
configuration structure.

appAddrl 32-bit Address This is a pointer to the first user application. In
the code example application associated with this
application note, it will be the pointer to the
bootloader project. If TOC2 is invalid, Flash boot
assumes the starting code is at ex1000_oeoe.

(table continues...)
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Table 8 (continued) TOC2 paramter definitions
Parameter Size Description
appFormatl 32-bit value This is the format of the header for the project pointed

to with “appAddrl”. Use only CYPRESS™ application
format, all other formats have been deprecated.

appAddr2 (optional)

32-bit Address

This points to an optional application address that
Flash boot does not use. The user could have the
bootloader refer to this address as where the actual
application starts. In this example, this value is null.

appFormat2 (optional)

32-bit value

This defines the appFormat for the application pointed
to by appAddr2. In this example, this value is null.

shashObj

32-bit number

The number of objects in addition to the

objects included in the FACTORY_HASH, starting with
“sigKeyAddr” that are listed in “addObj” that will be
included in the SECURE_HASH. In the SECURE LCS all
these items will be validated at boot time by default.
The maximum number of items is 15. If no additional
objects are hashed, this value should be “1” for the
RSA public Key.

sigKeyAddr

32-bit Address

This is a pointer to the RSA public key that is used to
validate the first project pointed to by “appAddrl”.

addobj

[116] 32-bit Addresses

This is an array of pointers to objects, terminated by a
null value, that will be added to the sECURE_HASH. This
array may be up to 15 words long and the remaining
values should be null.

tocFlags

32-bit value

Flash boot parameters defined in Table 9 and Table 10.

crc

32-bit value

For a faster boot sequence, you can change the following two parameters:

+  Boot clock frequency parameter “IMO/FLL clock frequency”

+ Debug parameter “Wait Window Time”

Once in production, setting the wait window to 0 will speed up the overall boot time. These two parameters and
others are part of the “tocFlags” variable in the cy_stc_ps_toc_t structure. Table 9 and Table 10 defines each of
the parameters than can be set with the tocFlags element of the structure for the 15t generation and 2™

generation parts respectively.

Table 9 Flash boot options (tocFlags) for 15t generation parts
Parameter Bits Settings Notes
IMO/FLL clock frequency | [1:0] 0=25MHz (FLL) [Default] | CMO+ clock during boot.
1=8 MHz (IMO) This clock will remain at
2= 50 MHz (FFL) this setting z':n‘ter Flgsh
~ boot execution until the
3 =Reserved OEM firmware changes it.
(table continues...)
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Table 9 (continued) Flash boot options (tocFlags) for 15t generation parts

Parameter Bits Settings Notes

Wait window time [4:2] 0=20ms Determines the wait
1=10ms window to allow sufficient
2=1ms time to acquire the debug

o port.
3=0ms (No wait window)
4=100ms
5-7 = Reserved

Reserved [30:5] Not used

VALIDATE_APP_NORMAL |[31] 0 = No authentication Setting this bit
1 = Authentication to 1 enables the

authentication of the user
code. The TOC2 must be
complete and the public
key must be written in to
Sflash.

Table 10 Flash boot options (tocFlags) for 2"d generation parts

Parameter Bits Settings Notes

IMO/FLL clock frequency | [1:0] 0=8 MHz, IMO, no FLL CMO+ clock during boot.
1=25MHz IMO + FLL This clock will remain at
2 =50 MHz IMO + FLL this setting @‘ter Flgsh

_ boot execution until the
3=UseROMboot clocks | oy firmware changes it.
configuration (100 MHz)

Wait window time [4:0] 0=20ms Determines the wait
1=10ms window to allow sufficient
2=1ms time to acquire the debug

o port.
3=0ms (No wait window)
4=100ms
5-7 = Reserved

SWJ (debug) pin state [6:5] 0=Do not enable SWJ Determines whether SWJ
pins pins are configured in SWJ
1=Do not enable SWJ mode by Flash boot in
pins SECURE LCS.

2 =Enable SWJ pins Note: SWJ pins may
3=Do not enable SWJ be engb[ed
. later in the
pins
user code.

(table continues...)
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Table 10 (continued) Flash boot options (tocFlags) for 2"d generation parts

Parameter Bits Settings Notes

App authenticate disable |[8:7] 0 = Authentication is Determines whether the
enabled application image digital
1 = Authentication is signature verification
disabled (authentication) is
2 = Authentication is performed.
enabled
3 =Authentication is
enabled
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Place the following code snippet in your CMO+ code (main.c) to generate the TOC2. There is also a redundant
copy of the TOC2 that is an exact copy, RTOC2. You may need to make changes to this section of code to match
your application.

/* Flashboot parameters stored in TOC2 for PSOC6ABLE2 devices */
#if defined(CY_DEVICE_PSOC6ABLE2)
#define CY_PS_FLASHBOOT_FLAGS ((CY_PS_FLASHBOOT VALIDATE_YES <<
CY_PS_TOC_FLAGS_APP_VERIFY_POS) \
| (CY_PS_FLASHBOOT WAIT 2@8MS << CY_PS_TOC_FLAGS_DELAY_POS) \
| (CY_PS_FLASHBOOT_CLK_25MHZ << CY_PS_TOC_FLAGS_CLOCKS_P0S))
#endif

/* Flashboot parameters stored in TOC2 for PSOC6A2M / PSoC6A512K devices */
#if defined(CY_DEVICE_PSOC6A2M) || defined(CY_DEVICE_PSOC6A512K)
#define CY_PS_FLASHBOOT_FLAGS ((CY_PS_FLASHBOOT VALIDATE_YES <<
CY_PS_TOC_FLAGS_APP_VERIFY_POS) \

| (CY_PS_FLASHBOOT_WAIT_20MS << CY_PS_TOC_FLAGS_DELAY_POS) \

| (CY_PS_FLASHBOOT CLK_25MHZ << CY_PS_TOC_FLAGS_CLOCKS_POS) \

| (CY_PS_FLASHBOOT SWJ_PINS ENABLE << CY_PS_TOC_FLAGS_SWJ_ENABLE_POS))
t#tendif

/* TOC2 in SFlash */
CY_SECTION(".cy_toc_part2") __ USED static const cy_stc_ps_toc_t cy _toc2 =

{

.objSize = sizeof(cy_stc_ps_toc_t) - sizeof(uint32_t), /* Object Size (Bytes)
excluding CRC */

.magicNum = CY_PS_TOC2_MAGICNUMBER, /* TOC2 ID (magic number) */

.userKeyAddr = (uint32_t)&CySecureKeyStorage, /* User key storage address */

.smifCfgAddr = @UL, /* SMIF config list pointer */

.appAddril = CY_START_OF_FLASH, /* Appl (MCUBoot) start address
*/

.appFormatl = CY_PS_APP_FORMAT_CYPRESS, /* Appl Format */

.appAddr2 = 0, /* App2 (User App) start
address */

.appFormat2 = 0, /* App2 Format */

.shashObj = 1UL, /* Include public key in the
SECURE HASH */

.sigkeyAddr = (uint32_t)&SFLASH->PUBLIC_KEY, /* Address of signature
verification key */

.tocFlags = CY_PS_FLASHBOOT_FLAGS, /* Flash boot flags stored in
TOC2 */

.crc = QUL /* CRC populated by
cymcuelftool at build time */
¥

/* RTOC2 in SFlash, this is a duplicate of TOC2 for redundancy */
CY_SECTION(".cy_rtoc_part2") __USED static const cy_stc_ps_toc_t cy rtoc2 =

{
.objSize = sizeof(cy_stc_ps_toc_t) - sizeof(uint32_t), /* Object Size (Bytes)
excluding CRC */
.magicNum = CY_PS_TOC2_MAGICNUMBER, /* TOC2 ID (magic number) */
.userKeyAddr = (uint32_t)&CySecureKeyStorage, /* User key storage address */
.smifCfgAddr = @UL, /* SMIF config list pointer */
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.appAddril = CY_START_OF_FLASH, /* Appl (MCUBoot) start address
*/

.appFormatl = CY_PS_APP_FORMAT_CYPRESS, /* Appl Format */

.appAddr2 = 0, /* App2 (User App) start
address */

.appFormat2 = 0, /* App2 Format */

.shashObj = 1UL, /* Include public key in the
SECURE HASH */

.sigKeyAddr = (uint32_t)&SFLASH->PUBLIC_KEY, /* Address of signature
verification key */

.tocFlags = CY_PS_FLASHBOOT_FLAGS, /* Flash boot flags stored in
TOC2 */

.crc = UL /* CRC populated by
cymcuelftool at build time */
¥

4.2 CYPRESS™ standard application format

The initial project that is executed after Flash boot must be validated with a public RSA crypto key. To do this,
the application must use the CYPRESS™ standard application format that includes a digital signature. This
allows Flash boot to perform the validation during the boot process before the application is executed. The
application format encapsulates the application binary, application metadata, and an encrypted digital
signature. The user application includes both the CM0+ and CM4, see Figure 11.

Footer Digital Signature
r CMx Core[N-1] Code and Data
Code
Segment| Core[N-1] Vector Table
Alignment Padding
cmo Core[0] Code and Data
Code
Segment Core[0] Vector Table
Application - -
size Alignment Padding
Customer Data
Core(N-1) CPU ID/ Type
Header
Core0 CPU ID/Type
Core(N-1) VT Offset
Core 0 VT Offset
Number of Cores (N)
Attributes
App ID Word
v Application Size
Figure 11 CYPRESS™ standard application format

Table 11 provides the details of the header section. It defines the total size, the number of cores, the type of
application, and the offset to each core application vector table.
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Table 11 Application header details

Offset Size Item Description

0x0 4 bytes Application size Flash image size in bytes

Ox4 4 bytes Application ID word Identifies the type of the flash image:
Bit 31 - 28: Always 0

Bit 27 - 24: Major version (User
defined)

Bit 23 - 16: Minor version (User
defined)

Bit 15 - 0: Application ID. For
example:

0x0000 - OTFFF User Application ID
0x8001 - Flash boot

0x8002 - Security Image (NA)
0x8003 - Bootloader

Values between 0x8004 - OxFFFF
Reserved

0x8 4 bytes Attribute Reserved for future use

0xC 4 bytes Number of cores (N) Number of cores used by the
application

0x10 + (4™i) 4 bytes Core(i) VT offset Offset to vector table in Core(i) code
segment

0x10 + (4*N) + (4™i) 4 bytes Core(i) CPU ID/type Customer-assigned CPU ID and core
index:

Bit 31 - 20: CPU ID. This is the part
number value from the CPUID [15:4]
register in an Arm’ device. (See below)

Bit 7 - 0: Core index

The core index is used to distinguish
between multiple cores of the same
type. For example, consider a system
consisting of MO+ and two M4s. The
MO+ is identified by CPUID=0xC60 and
Core Index=0. The first M4 is identified
by CPUID=0xC24 and Core Index=0.
The second M4 is identified by
CPUID=0xC24 and Core Index=1.

To generate proper values for the application header, an instance of the cy_stc_appheader_t structure must be
included in the project. An example of this structure can be seen in the code example at proj_btldr_cmOp/
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main.c source file. Although the header supports images for multiple CPU images, the bootloader in the
example only includes an image for the CMO+.

/***************************************

*  Application header and signature
***************************************/

#define CY_PS_VT OFFSET ((uint32_t)(& Vectors[@]) - CY_START_OF FLASH \
- offsetof(cy_stc_ps_appheader_t, coreevt)) /* CMoO+ VT Offset */
#define CY_PS_CPUID (PxC6000000UL ) /* CM@+ ARM CPUID[15:4] Reg shifted to
[31:20] */
#define CY_PS_CORE_IDX (euL) /* Index ID of the CM@+ core */

/** Secure Application header */
CY_SECTION(".cy_app_header") __ USED
static const cy_stc_ps_appheader_t cy_ps_appHeader = {

.objSize = CY_BOOT_BOOTLOADER_SIZE - CY_PS_SECURE_DIGSIG_SIZE,
.appId = (CY_PS_APP_VERSION | CY_PS_APP_ID SECUREIMG),
.appAttributes = @QUL, /* Reserved */
.numCores = 1UL, /* Only CMo+ */
.coreovt = CY_PS_VT_OFFSET, /* CMo+ VT offset */
.core@Id = CY_PS_CPUID | CY_PS_CORE_IDX, /* CM@+ core ID */

1

/* Secure Digital signature (Populated by cymcuelftool) */
CY_SECTION(".cy_app_signature") _ USED CY_ALIGN(4)
static const uint8_t cy_ps_appSignature[CY_PS_SECURE_DIGSIG_SIZE] = {0u};

You should update the MAJOR and MINOR version constants in the cy_ps_config.h file (see code example) to the
required value. The cY_USERAPP_ID is up to you; it should be between exeeeo and ex7FFF.

To generate the digital signature in the code, use the following. It will place the signature in the last 256 bytes of
the user code area. For a complete example of creating and adding the public key, see Appendix B - Creating
crypto key pairs.

/* Secure digital signature (Populated by cymcuelftool) */
CY_SECTION(".cy_app_signature"”) _ USED CY_ALIGN(4)
static const uint8_t cy_ps_appSignature[CY_PS_SECURE_DIGSIG_SIZE] = {Qu};

4.3 Infineon secured boot RSA public key format

The SFlash region stores the public key. It is stored in a binary format, not the ASCII format generated by
OpenSSL. The modulus, exponent, and three coefficients are pre-calculated to speed up the validation. Figure
12 shows the format.
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Actual storage of key,
exponent, modulus, and
coefficients.

Zero padding for 16 bytes
alignment

K3 Coefficient
Barrett Coefficient
(Up to 2048 bits, 256 bytes)

K2 Coefficient
Inverse of the modulo

(Up to 2048 bits, 256 bytes)
Key | Structure with pointers to
Signature K1 Coefficient key elements of public key
Scheme 2*moduloLen mod modulo in a format that the Crypto
(Up to 2048 bits, 256 bytes) engine expects.
Object Size
(Up to 32 bytes) — )
Pointer to K3 (or NULL)
N (Modulus) Pointer to K2 (or NULL)
Up to 32 bytes
(Up ytes) Pointer to K1 (or NULL)
cy_si_stc_public_key t ——m Exponent Size in Bytes
Pointer to Exponent
Length of Modulus in Bits
Pointer to N (Modulus)
Figure 12 Crypto key structures

The key is stored in three structures:

1. The first structure “Key” is stored as an object that can easily be included in the Secure_HASH
calculation. The “Signature Scheme” defines the structure of the key.

«  This example uses RSASA-PKCS1-v1_5-2048. The “Object Size” contains the full size of the public key
object, which contains the entire three structures.

2. The second structure contains the individual pieces of the public key: coefficients (K1, K2, K3), exponent
(E), and modulus (N). These values must be stored in a little-endian list of bytes. OpenSSL generates
these values in a big-endian format.

3. The third structure is a list of pointers to each piece of the public key, which is the format required for a
call to the Crypto driver. The key is stored in this expanded to speed up the code verification process.

For the companion code example (CE234992), there is already a default key generated. This will work fine for
development, but you should not use this for production. To generate a new custom key pair, see Appendix B -
Creating crypto key pairs, section 8.1.
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4.4 Programming eFuse to change the lifecycle stage

Attention: This is the most critical section to perform properly. The eFuse bits can be programmed only
from 0 to 1. If you program these bits incorrectly, you will need to remove the device from the
board and dispose of it. You should not proceed to this step until you have proven all other code
is working properly. Also, the only way to update the code after entering the SECURE state and
deisabling the debug ports is to have a proven bootloader working. The supply voltage on pin
Vbpioo must be set to 2.5V to program eFuse. You can also power then entire device with 2.5 V if
that is more convenient.

Code that is used to generate eFuse data can be found in companion code example (CE234992) at /
proj_btldr_cmOp/source/cy_ps_efuse.c. This file contains the structures that compile and create the eFuse data.
By default, no eFuse data will be generated, just in case the project is compiled and programmed by accident.
To enable eFuse programming, a line in cy_ps_efuse.h must be changed from:

“#define CY_EFUSE_AVAILABLE (@)”

to

“#define CY_EFUSE_AVAILABLE (1)”.

A byte of data is required to program each bit of the eFuse. The following pattern is used to program, validate,
or set as ‘don’t care’ each bit of eFuse.

/* EFUSE bit action macros */

t#tdefine CY_EFUSE_STATE_SET (ox01U) /* Tell programmer to set the EFUSE bit */
#define CY_EFUSE_STATE_UNSET (oxeeu) /* Tell programmer to check that the EFUSE bit is not
set */

#define CY_EFUSE_STATE_IGNORE (exffu) /* Tell programmer to ignore the EFUSE bit */

Find the section shown below in the file cy_ps_efuse.c. This is where you change the lifecycle to either
SECURE_WITH_DEBUG or SECURE, you can only set one of these bits. If one of these two bits is already set, the
programmer will not program the other. To program the SECURE or SECURE_WITH_DEBUG bit, change the
constant CY_EFUSE_STATE_IGNORE to CY_EFUSE_STATE_SET. The NORMAL bit will already be set from the factory and
should remain as “CY_EFUSE_STATE_IGNORE”".

.LIFECYCLE_STAGE =

{
CY_EFUSE_STATE_IGNORE, /* NORMAL lifecycle already set - ignore */
CY_EFUSE_STATE_IGNORE, /* SECURE_WITH_DEBUG lifecycle */
CY_EFUSE_STATE_IGNORE, /* SECURE life cycle */
CY_EFUSE_STATE_IGNORE, /* Infineon use only - ignore */
CY_EFUSE_LIFECYCLE_RESERVED® /* Reserved bits ignored */

¥
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44.1 Using CYPRESS™ Programmer

Important notes:

1. When using CYPRESS™ Programmer along with the Infineon MiniProg4 (CY8CKIT-005) to change the
lifecycle stage to SECURE, it does more than just programming the eFuse bits. The following are the
actual steps. Some programmers may not perform all three steps as outlined below.

« Validates the SFlash area with the internal Factory_HASH to make sure the part has not been
modified after leaving the factory. If an error is found, you should not advance to the SECURE
lifecycles stage.

+  Generates Secure_HASH based on the TOC2 entries. By default, secure_HASH includes all of SFlash.
Additional areas from user flash may be included if additional entries are added in TOC2. This hash
is written into the Secure_HASH area of the eFuse along with the number of zeros in the hash. This
guarantees that the hash cannot be modified by simply changing zeros to ones.

+  Programs the eFuse bits for access restrictions and the lifecycle SECURE bit

2, Programming the EFuses is irreversible, and care should be taken to verify the settings before blowing
them. Incorrect settings may brick the device permanently.
3. In SECURE lifecycle mode, if the secure access restrictions are set to enable the debug access ports,

the GPIOs need to be configured by the user for the debugger to get access to the debug ports. This
is demonstrated in the function configure_swj in file proj_btldr_cmOp/source/main.c. This function is
disabled by default but can be enabled by setting the macro CONFIGURE_SWJ_PINS to 1.

4.4.2 Setting up CYPRESS™ Programmer

Use the following settings when programming the kit using CYPRESS™ Programmer.

« Reset chip should be checked

+  Program Security Data should be un-checked (Note: When programming EFuse, this should be checked)
« Voltage set to 3.3V (Note: When programming EFuse, set this to 2.5V)

+ Reset Type set to Soft

+  Sflash Restrictions set to "Erase/Program USER/TOC/KEY allowed"

Specify the hex file to be programmed and then click Connect and Program.

a Cypress Programmer - O X
File View Options Help
| Probe/Kit: CYS8CKIT-062-BLE-1A070C0A03050400 - I’\atfnrm: PS0C 61/62/63 \_) \) (_j ] = 1]
Open Power | Connect Erase [Program| Read Verify
Settings X
Program Settings
File _7 L fmtb-example-psoce-security/bootloader_cm0Op/build/Cy8CKIT-062-BLE/Debug/bootloader_cm0p.hex |:|
Reset Chip
Verify Regions
External Memol
Program Security Data[_|
Probe Settings
Interface SWD
Voltage (V) 3.3 -
Reset Type Soft -
Sflash Restrictions Erase/Program USER/TOC/KEY allowed -
Log
| ~
Figure 13 CYPRESS™ Programmer settings for EFuse programming
Note: For more specific information about the operation of the code example after the device is

programmed, refer to the code example ReadMe.md file.
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5 Dual CPU design considerations

Making use of the dual-CPU feature in the PSoC™ 62/63 adds yet another security option. Although the two
CPUs share the same internal Flash and SRAM, the SMPUs allow you to isolate sections of memory as if each
CPU had its own memory. The IPC block provides a convenient way to pass 32-bit words between the two CPUs.
If large amounts of data need to be transferred between the two CPUs, a section of the SRAM can be configured
to be accessible by both CPUs. This way you can pass a pointer to a structure that includes a large buffer of
data.

One way to make use of the dual-CPU feature for added security is to divide your application between SECURE
and NON-SECURE code. Run the SECURE code in CM0+ and the NON-SECURE part of the application on CM4.
This way you can limit the SECURE code and more thoroughly test it. Also, you would run the more complicated
software such was Wi-Fi or Bluetooth” stacks that are more difficult to test on CM4.

One example is a Wi-Fi enabled door lock with finger print sensor. The code that operates the SECURE part of
the door lock such as the finger print sensor and the hardware mechanism would run on CM0+ and the Wi-Fi
stack would run on CM4.
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6 Summary

This application note has shown how the PSoC™ 6 MCU hardware can be used to create a secured system. Every
application has different requirements and the flexibility of the PSoC™ security hardware can be used to adapt
to those needs. As mentioned earlier, it is important to think about security from the beginning of your project
and analyze each point of access to the code and data, do not let security be an afterthought. Determining up
front what is required will reduce the chance that you will need to re-architect your project late in your project
schedule.

Appendix A - Code example of a security application template in this document describes a code example that
can be used as a template to implement what has been discussed in the application note.
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7 Appendix A - Code example of a security application
template
This appendix explains a code example that demonstrates most of the topics discussed in this application note.

The code example CE234992 PSoC™ 6 MCU: Security Template, includes all the source code, Makefiles, and
scripts required to build, link, and sign the code. The following is a list of features demonstrated:

+  Bootloader based on the industry standard MCUboot (CMO+)

+  Bootloader is cryptographically signed

«  Dual-CPU operation; user applications for both CM0+ and CM4

«  Supports device firmware update (DFU) with the standard UART interface
+  FreeRTOS running on CM4

+  CMO+and CM4 application bundle signed

«  Full Chain of Trust

+ Isolated CPUs using SMPUs

+  Communication between CMO+ and CM4

This code example consists of the following three projects:

1. proj_btldr_cmOp (MCUboot bootloader CM0+)
2, proj_cmOp (CMO+ user project)
3. proj_cm4 (CM4 user project)

Application File Structure

Application

(mtb-example-psoc6-security)

CMO0+ MCUBoot CMO+ User Proj CM4 User Proj

(proj_btldr_cmOp) (proj_cmOp) (proj_cm4)
Bootloader Project Files: CMO+ Project Files: CM4 Project Files:
main.c main.c main.c
cy_flash_map.h ipc_communication.c/h FreeRTOSConfig.h
cy_ps_config.c/h ipc_communication.c/h

cy_ps_efuse.c/h
cy_ps_keystorage.c/h
cy_ps_prot_units.c/h

Figure 14 Application file structure
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7.1 Bootup flow
This flow assumes that the device has already been moved to the SECURE lifecycle stage.
1. CMO+ starts from reset.

2, CMO+ executes the internal ROM code that does the following:
+  Loads the trim values
«  Verifies that the second half of the boot code (Flash boot) and the user’s public key are intact

3. The Flash boot code verifies that the user’s bootloader (proj_btldr_cmO0p) is signed by the owner of the
public key (RSA-2048) and that the code has not been corrupted.

4, Jumps to the bootloader.
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infineon

Reset ( CMO+ )

!

Flash boot and public
Key Validation
( Compare hash with
secure hash in eFuse )

!

Jump to Flash boot

!

Validate proj_btldr_cmOp
(Validate with RSA-2048
public key )

!

Jump to proj_btldr_cmOp

!

Flash

Note:

The colors of the boxes
indicate what type of
memory either the code
resides.

Proj_btldr_cmOp

This project is based on the industry
standard MCUBoot.
It validates the primary and secondary
images with ECC public key. Upgrade
if needed and jump to proj_cmOp.

!

Execute proj_cmOp
Configure protection units
and set PC values.

!

project

Enable CM4 User Proj
Continue running CMO+ User

proj_cmOp

proj_cm4

Figure 15 Application boot flow

5. The bootloader configures the protection units to isolate CM0+ and CM4 projects.

«  Review the code in the /proj_btldr_cmOp/cy_ps_prot_units.c file to learn how the SMPUs and

Protection Context registers are set up.

6. The code checks to see if there is a newer version of the user application bundle, which includes both the

CMO0+ and CM4 applications. If a newer version is available, the code does the following:

a. Copies the new firmware image to the primary slot
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b. Validates the new firmware image with the ECC key
c. If the image is verified, jumps to the user CMO+ project (proj_cmOp)
7. The CMO+ application enables CM4 and continues to execute its application.
« Inthe associated code examples that is used to demonstrate the firmware flow, the CM0O+
application is nothing more than a LED blink application. You can remove these two lines of code
and replace it with your own application.

8. CM4 comes out of reset, and does the following:
a. Configures the required hardware
b. Initializes a few FreeRTOS tasks

One of these tasks is the DFU (device firmware upgrade), which listens on a serial port waiting for a command
to start the download of a new version of the application bundle.

7.2 Application Chain of Trust (CoT)

The following diagram illustrates the Chain of Trust for this project. Note that there are two different types of
crypto keys used to validate the full application. The PSoC™ 62/63 MCU natively uses an RSA-2048 key; the
bootloader based on MCUboot uses ECC by default.

Boot ROM Code Immutable Boot ROM validates
Secure Hash

eFuse (OTP) The Hash of Flash boot and the
(| Secure Hash RSA-2048 public key is stored in
* Flash boot ~ eFuse.
* RSA Public Key
SFlash The public key (RSA-2048) that is
Flash boot used to validate the CMO+
Bootloader project is stored in
—1 RSA Public Key Sflash.
Flash
CMO0+ Bootloader CMO+ Bootloader and the
. ECC Public Key is signed
ECCFale ey by the private key (RSA-
Encrypted Digital 2048).
Signature (RSA)
Flash
CMO+ User Proj The CIV_I0+_and CM4 applica_tion
bundle is signed by the public key
CM4 User Proj (ECC) that is stored with the CMO+
Encrypted Digital Bootloader.
Signature (ECC)
Figure 16 Chain of Trust
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7.3 Project memory map

The memory map for the example project is shown below. The diagrams also show the access of the memory
by the protection context.

The flash memory is broken up into four major areas:

+  Bootloader

«  Protected memory

+  Primary slot

+ Secondary slot

The bootloader area is not intended to be updated in the field and therefore must be thoroughly tested before
release. Most of the code in the bootloader area is a port from MCUboot, the industry standard bootloader
infrastructure.

The protected memory region contains the sensitive data; only CM0+ has direct access to it. While some of this
data could be preprogrammed from the factory, other parts could be used for dynamic storage.

The primary slot is the area in which the application code is executed. Both CM0+ and CM4 execute code in this
region. Only CMO+ can write to this area while executing the bootloader; CM4 cannot write to this region.

The secondary slot is the area used to store an updated project. In most applications, it is up to CM4 to perform
the operation because it is most likely to be the CPU communicating to the outside world via Wi-Fi, Bluetooth’,
or DFU. If required, the CMO+ application code can update the code in the secondary slot.

Table 12 Protection context summary

Protection context (PC) CPU access Notes

0 CMo+ Default state of CM0+. It is used to configure the protection
units at the beginning of the bootloader code. All memory
and registers are accessible in PC=0; all system calls
operate at PC=0 as well.

1 CMO+ The bootloader runs at Protection Context 1 after
protection units have been configured. All areas that need
to be accessed by the bootloader have PC=1 as part of
their mask.

2 CMO+ Reserved for the protected memory that could be used for
secure storage. CM0+ must switch to PC=2 while accessing
the area.

4 CM4 Domain of the CM4 CPU. It must access its portion of the
primary slot and all of the secondary flash area. The CM4
code is responsible for updating the code in the secondary
slot.
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512K 1M 2M
Internal Flash Internal Flash
_ 0x1000_0000 _ Internal Flash 0x1000_0000 — 0x1000_0000
i CMo+ CMO+ MPU-1 CMo+
S(“ch’Uz 10:; BootLoader S'\’ADZU_'? BootlLoader S(PCU: 03; BootlLoader
(112K) (PC=0) (112K) (112K)
= 0x1001_C000 = 0x1001_C000 — 0x1001_C000
SMPU-7 Protected Memory SMPU-7 Protected Memory SMPU-7 Protected Memory
(PC =2) (16K) (PC=2) (16K) (PC=2) )
| — | O =l 0x1002_0000
T Primary Slot 1| (¥1002.0000 ! PrimarySlot | 0x1002_0000 . PrmarySlot ||
SMPU-11 i (192K) | SMPU-11 } (448K) } SMPU-11| | (896K) 1
(Pc=12)| || cmo+ Project | (PC=12)| || CMO+ Project 1 (PC=12)| |l CMO+Project |
1 (64K) 1 ‘ (128K) : ; (128K) ;
= 110x1003_0000 — | ! 0x1004_0000 = 1| 0x1004_0000
| | | | : |
| | | |
| CM4Project | } CM4 Project | SMPU-9 i CM4 Project |
! (128K) ! ; (320K) ! (PC=14)| | (768K) !
| 3 | | | |
| |
=== 0x1005_0000 === 0x1009_0000 - L:::::::::::::{ 0x1010_0000
} Secondary Slot | } Secondary Slot I } Secondary Slot |
SMPU9| | (192K) 1 SMPU-9| || (448K) 1 1 (896K) 1
(PC=14)] || CMO+ Project 1 (PC=14)| | CMO+ Project | | CMO+ Project 1
; (64K) } | (128K) } ; (128K) }
} } 0x1006_0000 : i 0x100B_0000 SMPU-g| | ! 0x1012_0000
; | } | (PC=14) | i
i CM4 Project | i CM4 Project || i CM4 Project |
| (128K) ! | (320K) ; } (768K) }
‘ | w | ‘ |
| [ |
- || 0x1008_0000 -y 1| 0x1010_0000 L|. || 0x101E_0000
SMPU-6 Scratch
(PC=1) (128K)
— 0x1020_0000
Figure 17 Project flash memory maps for 512K, 1M, and 2M flash parts
512K/1M Flash 2M Flash
(256K/288K SRAM) (1M SRAM )
SRAM SRAM
A 0x0800_0000 _ 0x0800_0000
CMO+ CMO+
?,'\CA F1U1- 122 Bootloader/Project SMPU-12 Bootloader/Project
(PC=1,2) (64K) (PC=1.2) (192K)
0x0801_0000 — 0x0803_0000
SMPU-10 Shared SRAM SMPU-10 Shared SRAM
(PC=1,2,4) (32K) (PC=1,2,4) (64K)
0x0801_8000 L— 0x0804_0000
SMPU-5 CM4 Project SMPU-5 CM4 Project
(PC=4) (160K) (PC=4) (768K)
0x0804_0000 L 0x0810_0000
Figure 18 Project SRAM memory maps for 512K, 1M, and 2M flash parts
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8 Appendix B - Creating crypto key pairs

The ModusToolbox™ software installation includes the tools required to generate and format the private/public
key pairs, including OpenSSL. However, the Python 3.8.10 or later should be installed separately and added to
the top of the system path in environmental variables. To access these tools without updating any system
paths, use the “Modus Shell” command-line shell.

The PSoC™ 62/63 Flash boot code requires an RSA-2048 public key to be stored in SFlash, and the first user code
to be signed with the corresponding private key to boot in the SECURE lifecycle stage. In the companion code
example (CE234992), “proj_btldr_cmO0p” is the first user code.

The proj_btldr_cmOp project is a port of the open source MCUboot project. This project boots the actual user
project code; it also requires a crypto key pair to sign and validate the user project. MCUboot uses the ECDSA
algorithm instead of RSA, so it cannot use the same RSA key that is used by Flash boot. This appendix provides
details of what is required to generate the keys for both RSA and ECC.

8.1 Generating the RSA key pair

The companion code example (CE234992) includes a default key that is already generated. This key is sufficient
for development, but do not use this for production. These steps will generate a custom private/public key pair
in the keys directory and generate a C-compatible public key, but you must manually copy the generated C code
to the cy_ps_keystorage.c file.
Do the following to generate a new custom key pair:
1. Start the “modus-shell” application that is installed along with ModusToolbox™ software.
2, Navigate to mtb-psoc6-example-security/proj_btldr_cmOp directory.
3. Execute the command make rsa_keygen.

«  Thiscommand creates a file in the keys subdirectory called rsa_to_c_generated.txt.
4, Copy the following arrays from the rsa_to_c_generated.txt file and replace those in cy_ps_keystorage.c.

« .moduleDatal]

« .expData[]

« .barrettDatal]

« .inverseModuleData(]

« .rBarDatal]

8.2 Generating the ECC key pair

Generating the ECC key pair required for the bootloader (MCUboot) is similar to the RSA key pair generation but
simpler.

1. Start the modus-shell application.
2, Navigate to the mtb-psoc6-example-security/bootloader_cmp0 directory.
3. Execute the command make ecc_keygen.

This will create the following files in the keys folder:

«  cypress-test-ec-p256.pem (private key)

«  cypress-test-ec-p256.pub (public key in a C-like array)

« ecc-public-key-p256.h (public-key header file in C-like array)

The public key will automatically be incorporated into the MCUboot build, you do not need to edit the files.
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8.2.1 Example RSA private/public key files

The “make rsa_keygen” command creates the following two other files in the keys directory:
«  rsa_private_generated.txt
+ rsa_public_generated.txt
These files are generated by OpenSSL and are used to create the rsa_to_c_generated.txt file.

Note: These listings show examples of what the files will look like. The actual data in the files may differ
from what is shown here.

The rsa_private_generated.txt private key file will look like as follows:

MIIEowIBAAKCAQEAt8ygBxZNdfUHz7m7sQXPYinpAuiO5aFoEJsiopNTScohuCGA
BTtReTI7V5x8h/etDrnWG+AhYNHKT+uh705ZFZU7MBd/69n9jBWFIDfbIhXfvv69
r7uPwVIK705GLKUNVNCxHiz6/CGCYs6RyWQIXQxMuSqCCjKOxhk5x0SwjMeAh3Pm
MR+AZFd2W7fkADjFDODgb9mDGp+49z0+v/nNGTgNRSPEbMbBWjAjcNyxeM5LrtzTz
8pongkeg/XBBsaDazZPpgHm67HknMAHUe TKACXx9vLHHks jm8w6n55/QGwiGBUd1fk
z0gQiid4rGluKoCfT76sqdpdCQuahF2EACTbOMwIDAQABAOIBAF6UUZTUCTALOrs1
3DuPvdPJtTnl6gKIOECzU/NM1IMYHInfwzzt9VLkY1OHDZ35+XemcWMOxp5H1k+h
9UUysWzFyhtJPG51Um+Pcl/bzk2e2/AwrfOMFMFqU10pbjvIIiAm872Pb+fmZm3p
ImNHzfFkDucJ1Ljio®2VFYJQ+ni2ITJGi/QxRBOSOI5PAIUQCULOiRXx3mO61uIC5
DazZGZLmO/tpz1FNGNMHUP+iQH5UlwIRhgqSnEHOdOUWikUhZU2d3MWEJIqSOI/tx12
nsUgqsx00G7FNrtvo2QzSXROmYXImloEuFJpwSrMsQnlqOukK13SBXkfhoCojOwNrj
sZetAOECEYEA7ELrvtqC6FTQFiN49L3W+/WAMLMtPpguUhWGZB6A+/HaTM300xMj
Ks93XdeA+LMw9k3Q9ukAbisy/PphCShiHphbhzPzFQvluXXswh/kh82X+TFEs+jt
9ceAuA45cULZHPXSqljmHet4wXeiDH1tCufG6VP3IL90hGKkRqQWZwI30CEYEAXyep
gKNsdVzdAHFVcX2Wd7kUSbS2TrmIos1CmyjdfEtPbWjzWbRCFzAjpqVDjNA67ZeH
DB068xjaNvOunkBj/Sc1FQXprPXbPcOT6WAn6J2woC1ljabnCiXamHKoaNenbze5+
K5nlLyulLnnyjWt8p633vH1cUU61djq+M+VTnOWSCgYEAK7NmhANBMpfc+uokNQT1
gMDVC1wInggvdRuFz900GXPiYH+k/sWBB8Nc/3C5bUFBC80sKCAUJ8uT7bltrnbz
MGLXxXX3pqq+SZxxE7jtX+FpcduoJIFwrX6rgWrBx0s/SwZsgn2RCQFQOQubShPJo
mBe8L6RRbkS3BmpVI@OqM1lUCEYBfsstv4abfIXatE/zDTrEmV1jYNhOz1v3nM4V1U
ObrUc@vjgz8Mp/XgNpOrDFb9X@IxeVIvmlshXZveNBI/6QKjLyfuxjyXhDyp4dXj
029DtCK2pl1jTARReAcmolISry4h32FaAlR7wH7ijm7jTFdEi90Y3RRzbalL9ARVMO
rHu/uQKBgB7cZeXHu2zPhKN91uuB5NI8N3SoGhlWajjODM8NbAMQdWF 16BHVGb10Z
Ld12+nuRnzim7rpS8VvN1VRS2KnmTvdpGEb8yW5hMxGN3J8yKg8Gs1bMal4rmlh7j
GBZrx4ttq9fjipfgTYgN1QTWabxRqG8SOLTIjWpiVZMZOGOFSOLt
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The “rsa_public_generated.txt” public key file will look like as follows:

MIIBIjANBgkqhkiGOw@BAQEFAAOCAQ8AMIIBCgKCAQEAL8YgBXxZNdFUHZz7m7sQXP
YinpAuiO5aFoEJsiopNTScohuCGABTtReTI7V5x8h/etDrnWG+AhYNHKT+uh705Z
FZU7MBd/69n9]jBWFIDfbJIhXfvv69r7uPwVIK705GLKkUNVNCXxHiz6/CGCYS6RyWQ9
XQxMuSqCCiKOxhk5x@SwjMeAh3PmMR+AZFd2W7FkADjFDODgbOMDGP+4920+v/NnG
TgNRSPEbMbBwWjAjcNyxeM5LrtzTz8pongkeg/XBBsaDaZPpqHm67HknMAHUe TKAC
Xx9vLHHks jm8w6Nn55/QGwiGBUd1fkz0gQii4rGluKoCFfT76sqdpdCQuahF2EACTbO
MwIDAQAB

8.3 Editing the RSA key C file (cy_ps_keystorage.c)
The following is an example of the cy_ps_keystorage.c file. The sections shown in jtalics are areas that need to
be replaced with the contents of the rsa_to_c_generated.txt file after running the make rsa_keygen command.

The final step to updating the public key in the secure image is to copy the code in the generated
rsa_to_c_generated.txt file to the cy_keystorage.c source file, which is part of the secure image project.
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An example of this file after being updated is shown below. The replacement code from the generated key data
is shown below in italics.

* \file cy_ps_keystorage.c
* \version 1.20

*

* \brief

* Secure key storage for application usage.
*

3k 3k 3k >k >k 3k 3k 3k sk >k >k 5k 5k 3k 3k 3k 3k 3k 5k 5k 3k sk >k >k 3k 5k 5k sk >k >k 5k 5k 3k 3k 3k 3k 5k 3k 5k k sk >k 3k 3k 3k sk sk >k 5k 5k 3k 3k 3k 3k 5k 3k 3k 3k sk sk >k 3k ok 3k sk >k >k 5k 5k sk sk >k k sk sk sk k sk k ok
* \copyright

* Copyright 2017-2018, Cypress Semiconductor Corporation. All rights reserved.

* You may use this file only in accordance with the license, terms, conditions,
* disclaimers, and limitations in the end user license agreement accompanying

* the software package with which this file was provided.
*******************************************************************************/

#include <source/cy_ps_keystorage.h>

#if defined(__cplusplus)
extern "C" {
#endif

/* Secure Key Storage (Note: Ensure that the alignment matches the Protection unit
configuration) */
CY_ALIGN(1024) _ USED const uint8_t CySecureKeyStorage[CY_PS_SECURE_KEY_ARRAY_SIZE]
[CY_PS_SECURE_KEY_LENGTH] = {

{oxe0u}, /* Insert user key #1 values */

{oxe0u}, /* Insert user key #2 values */

{@x00u}, /* Insert user key #3 values */

{ex00u} /* Insert user key #4 values */

1

/* Public key in SFlash */
CY_SECTION(".cy_sflash_public_key") _ USED const cy_ps_stc_public_key t cy publicKey =
{

.objSize = sizeof(cy_ps_stc_public_key_t),

.signatureScheme = CY_PS_PUBLIC_KEY_RSA 2048,

.publicKeyStruct =
{
.moduloAddr = (uint32_t)&(SFLASH->PUBLIC_KEY) +
offsetof(cy_ps_stc_public_key t, moduloData),
.moduloSize = CY_PS_PUBLIC_KEY_SIZEOF_BYTE * CY_PS_PUBLIC_KEY_MODULOLENGTH,
.expAddr = (uint32_t)&(SFLASH->PUBLIC_KEY) +

offsetof(cy_ps_stc_public_key t, expData),

.expSize CY_PS_PUBLIC_KEY_SIZEOF_BYTE * CY_PS_PUBLIC_KEY_ EXPLENGTH,

.barrettAddr (uint32_t)&(SFLASH->PUBLIC_KEY) +
offsetof(cy_ps_stc_public_key t, barrettData),

.inverseModuloAddr = (uint32_t)&(SFLASH->PUBLIC_KEY) +
offsetof(cy_ps_stc_public_key t, inverseModuloData),

.rBarAddr = (uint32_t)&(SFLASH->PUBLIC_KEY) +
offsetof(cy_ps_stc_public_key t, rBarData),
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}s

{
0x33u,

OxE6u,
oxD3u,
Ox8Au,
ox60u,
ox30u,
oxC7u,
0x49u,
OxDAu,
ox82u,
o0x92u,
ox70u,
Ox4Eu,
Ox9Fu,
oxChsu,
ox64u,
oxC7u,
Ox8Eu,
oxChu,
ox21u,
ox27u,
oxClu,
ox15u,
OxFDu,
ox15u,
oxD1lu,
0xADu,
ox79u,
oxCAu,
ox68u,
ox62u,
OxF5u,
b

.expData =

{
ox01u,

b

{
oxDCu,

Ox2Au,
0x94u,
ox0o7u,
ox6cCu,
OxACu,
ox69u,
Ox6EuU,
ox82u,
OxA5u,
OxFAu,

Application Note

.moduloData =

OxF4u,
ox42u,
ox27u,
oxleu,
ox88u,
Ox6Fu,
0x02u,
Ox1Eu,
OxA0u,
ox27u,
ox33u,
oxBou,
oxCéu,
Ox1Au,
ox38u,
ox80u,
ox8Cu,
0x32u,
ox3Du,
OxFCu,
ox45u,
Ox8Fu,
ox26u,
oxD9u,
ox59u,
ox60u,
OxF7u,
ox51u,
ox49u,
OxAlu,
0xCFu,
ox75u,

0x00u,

.barrettData =

ox40u,
Ox7Bu,
OxF2u,
ox91u,
ox12u,
ox85u,
ox7Du,
ox80u,
ox91u,
0x84u,
ox81u,

ox36u,
ox42u,
OxA6u,
OXE8u,
OxBou,
Ox8Eu,
OxAbu,
OxBBu,
OxBlu,
Ox9Au,
Ox5Eu,
Ox31u,
OxF9u,
ox83u,
ox00u,
Ox1Fu,
OxBou,
Ox0Au,
ox64u,
OxFAu,
Ox2Eu,
OxBBu,
OxDBu,
OxEBu,
OxEEu,
ox21u,
ox87u,
Ox3Bu,
Ox53u,
OXE5u,
ox05u,
0x4Du,

ox01u,

ox33u,
ox5Cu,
ox80u,
oxocCu,
Ox3Bu,
ox75u,
oxD3u,
Ox51u,
Ox98u,
ox26u,
OxBAu,

0x09u,
ox97u,
Ox8Au,
oxCCu,
ox01u,
ox2Cu,
ox4cCu,
Ox6Eu,
ox41u,
OxF2u,
ox2Cu,
0x1Bu,
OxBFu,
oxDS9u,
OxE4u,
ox31u,
ox44u,
ox82u,
oxC9u,
ox2Cu,
ox46u,
OxAFu,
ox37u,
Ox7Fu,
OxECu,
OxEou,
ox7Cu,
oxo05u,
ox93u,
Ox8Eu,
oxB1lu,
oxlé6u,

oxo0u,

Ox8Au,
ox77u,
OxOEu,
ox66u,
ox79u,
0x44u,
ox30u,
oxCou,
ox47u,
OxFou,
ox57u,

0x00u,
ox76u,
Ox5Bu,
OxE4u,
OxFDu,
ox79u,
Ox1Eu,
Ox1Eu,
ox76u,
OxF3u,
ox37u,
OxF1lu,
OxBEu,
Ox6Fu,
OxB7u,
OxE6u,
oxC7u,
Ox2Au,
ox91u,
Ox1Eu,
Ox4Eu,
OxBDu,
ox24u,
ox17u,
OxAlu,
0x1Bu,
ox9Cu,
ox80u,
OxA2u,
OxE8u,
OxBBu,
ox07u,

Ox4Eu,
oxCou,
OxA7u,
ox62u,
OxEou,
ox95u,
Ox4Bu,
ox72u,
OXFEu,
0x90u,
OxDFu,

ox61u,
ox2Au,
ox1Au,
ox57u,
ox79u,
ox1Cu,
ox75u,
Ox6Au,
OxFDu,
ox34u,
oxDCu,
OxE4u,
0x33u,
OxEou,
Ox5Bu,
ox73u,
ox39u,
0xB9u,
OxCEu,
oxBlu,
OXEFu,
OXFEuU,
ox85u,
ox30u,
OxEBu,
oxDéu,
ox57u,
ox21u,
ox22u,
ox02u,
oxB9u,
OxAou,

OxA6u,
oxBlu,
ox99u,
ox3Du,
oxBé6u,
oxeDu,
ox57u,
0x4Bu,
Ox4Fu,
ox62u,
ox98u,

56

ox17u,
OxABu,
0x2Bu,
ox77u,
Ox7Eu,
oxCBu,
0x00u,
OxFAu,
OxA0u,
OxB7u,
ox08u,
ox51u,
OxF7u,
OxEou,
ox76u,
ox87u,
ox19u,
ox4Cu,
0x62u,
oxDou,
Ox4Au,
OxBEu,
ox15u,
0x3Bu,
Ox4Fu,
0xB9u,
0x3Bu,
oxB8u,
Ox9Bu,
OxE9u,
0xCFu,
oxCCu,

OxFlu,
ox95u,
OxE5u,
Ox1Eu,
ox81u,
oxC7u,
ox4Du,
ox23u,
OxBCu,
oxClu,
0x00u,

OxAlu,
OxEFu,
Ox2Eu,
ox54u,
OXEAu,
0xDBu,
oxCCu,
ox64u,
ox47u,
OXEBu,
ox8Cu,
ox03u,
OxB8u,
oxoCu,
ox57u,
ox80u,
oxcéu,
oxocCu,
ox82u,
ox54u,
ox52u,
OxDFu,
ox8Cu,
ox95u,
0xCAu,
Ox0OEu,
ox32u,
ox21u,
ox1ou,
ox29u,
ox07u,
OxB7u,

ox08u,
ox68u,
0xBDu,
0x02u,
OxB4u,
OXESu,
Ox2Fu,
ox76u,
OxBFu,
Ox0Fu,
OxE3u,
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oxceu,
ox37u,
ox17u,
0xB5u,
ox8Cu,
Ox5Fu,
ox38u,
OxFou,
OxA3u,
Ox8Eu,
0x64u,
oxC8u,
OxA6u,
Ox3Au,
ox27u,
0xB8u,
OxAAu,
oxC9u,
OXEEuU,
0xBDu,
ox44u,
0x01u,

b

{
oxo05u,

ox24u,
ox61u,
0xB8u,
ox1Au,
oxCAu,
oxCFu,
OxE5u,
OxEFu,
ox13u,
oxDDu,
ox24u,
o0x42u,
OxA9u,
ox86u,
ox32u,
OxAFu,
OxF3u,
ox22u,
Ox8Eu,
ox55u,
ox02u,
ox86u,
ox28u,
0x4Bu,
Ox5Eu,
ox36u,
0x84u,

Application Note

OxACu,
Ox7Au,
ox20u,
OxAFu,
0x1Bu,
ox59u,
ox98u,
Ox1Fu,
Ox6Fu,
0x39u,
ox71u,
OxA3u,
ox48u,
ox55u,
OxF4u,
0xC4u,
0x4Du,
OxBFu,
ox19u,
OxFlu,
ox67u,
0x00u,

. lnverseModuloData

oxD9u,
ox61u,
0xCEu,
ox75u,
ox61lu,
OxFFu,
ox6Du,
Ox7Fu,
0x84u,
ox9Du,
OxE7u,
OxAFu,
ox74u,
0x69u,
ox11u,
Ox8Fu,
oxDéu,
ox8Cu,
Ox4Eu,
0x3Bu,
ox15u,
ox46u,
oxCCu,
oxBé6u,
OxBBu,
ox17u,
ox1Du,
0x09u,

ox99u,
ox61u,
ox46u,
OxCEu,
0x44u,
OX6Eu,
OxFé6u,
Ox13u,
Ox8Fu,
oxDCu,
ox16u,
Ox1Bu,
Ox1Au,
Ox3Fu,
9x19u,
Ox8Fu,
0x3Bu,
oxCCu,
OxFou,
ox42u,
oxD5u,
ox00u,

Ox5Au,
OxBBu,
ox5Cu,
ox36u,
OxElu,
ox51u,
ox35u,
OxC3u,
Ox2Eu,
Ox4Eu,
oxD3u,
Ox4Eu,
Ox48u,
Ox3Du,
ox1Eu,
Ox4Bu,
ox1Du,
OxB1lu,
ox2Du,
Ox33u,
oxD3u,
Ox46u,
Ox46u,
OxF9u,
Ox7Bu,
oxC7u,
ox16u,
ox54u,

ox82u,
ox09u,
ox8Du,
0x03u,
ox41u,
Ox1Eu,
0x0Bu,
Ox3Eu,
oxD5u,
oxDCu,
OxElu,
ox89u,
OxF5u,
Ox7Eu,
ox2Cu,
0xCBu,
oxD2u,
ox8Du,
oxD5u,
OxF9u,
ox32u,
0x00u,

ox11u,
ox30u,
ox32u,
ox1Au,
ox63u,
Ox5Fu,
ox87u,
ox18u,
OxF2u,
ox81u,
ox71u,
0x94u,
ox02u,
ox56u,
OxEFu,
0x01u,
OXx0OFu,
OxFou,
Ox6Bu,
Ox5Bu,
0x39u,
ox17u,
ox07u,
ox52u,
ox20u,
OxFFu,
OxElu,
oxC8u,

OxFAu,
ox25u,
OxBFu,
Ox8Au,
oxCéu,
ox1Cu,
ox3Du,
ox46u,
OxCEu,
ox07u,
oxCDu,
ox26u,
oxD5u,
Ox4Bu,
ox53u,
oxC9u,
OxA3u,
OxF9u,
ox58u,
OxB2u,
0x00u,

OxBDu,
0x03u,
OxBBu,
ox6Cu,
ox2Cu,
oxcéu,
OxBCu,
0x8Du,
Ox6Eu,
0x34u,
ox51u,
ox23u,
ox54u,
OxFou,
0x0Bu,
oxCéu,
ox1Cu,
oxo5u,
OxDBu,
OxA2u,
OxE3u,
ox92u,
ox16u,
OxFCu,
OXEEu,
Ox4Eu,
ox37u,
oxD5u,

ox29u,
ox92u,
ox88u,
OxEAu,
Ox9Au,
oxDBu,
oxCDu,
0x0Bu,
oxD8u,
Ox6Fu,
ox20u,
ox35u,
OxF2u,
ox44u,
oxo6u,
OXxE5u,
ox2Au,
ox3Eu,
OxEou,
oxCou,
0x14u,

ox82u,
ox6Du,
ox1Du,
ox2Du,
Ox8Fu,
Ox2Au,
ox74u,
Ox9Au,
ox8Du,
OxFDu,
ox49u,
oxD8u,
0x8Bu,
oxD1u,
0x64u,
Ox8Eu,
ox38u,
ox96u,
ox7Du,
OxFDu,
ox83u,
0x4Du,
ox82u,
Ox8Fu,
ox3Du,
OxBAu,
ox25u,
ox09u,

57

ox61u,
OxCFu,
OxE7u,
0x33u,
oxCDu,
oxD7u,
ox11u,
OxADu,
OxA6u,
OxE8u,
OxDFu,
ox51u,
ox65u,
Ox7Fu,
ox75u,
OxFBu,
ox36u,
Ox5Fu,
oxo7u,
oxo7u,
0x90u,

Ox6AuU,
0x5Bu,
0x3Fu,
ox46u,
0x49u,
Ox2Au,
ox47u,
0x60u,
ox88u,
ox21u,
Ox6Eu,
oxo5u,
OxE4u,
OxAou,
0x60u,
0x84u,
ox15u,
OxFAu,
ox31u,
OxF8u,
0x48u,
ox89u,
ox68u,
0x84u,
ox14u,
OXxAEu,
OxBEu,
ox78u,

OxF3u,
OxDFu,
0x0Bu,
0xC4u,
ox57u,
ox37u,
OxA5u,
oxo7u,
ox36u,
Ox3Au,
0x4Bu,
Ox8Fu,
Ox8Fu,
OxBAu,
0xB8u,
ox91u,
Ox2Fu,
Ox9Eu,
Ox1Bu,
ox3Cu,
0x64u,

ox74u,
OxEDu,
ox38u,
ox3Cu,
ox86u,
ox38u,
Ox2Fu,
oxCAu,
oxC3u,
ox18u,
OxF9u,
ox64u,
Ox7Bu,
ox39u,
ox7Du,
ox8Du,
0x4Bu,
ox97u,
ox92u,
ox12u,
OxA8u,
ox6Du,
OxE7u,
ox84u,
ox26u,
ox81u,
0x02u,
oxD4u,
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b

{

}s
};

}
tendif

ox34u,
OxACu,
ox1Cu,
OxE3u,

.rBarData

oxCDu,
ox19u,
ox2Cu,
ox75u,
Ox9Fu,
oxCFu,
ox38u,
oxBé6u,
ox25u,
ox7Du,
ox6Du,
Ox8Fu,
oxBlu,
ox60u,
0x3Au,
0x9Bu,
ox38u,
ox71u,
Ox3Au,
OxDEu,
oxD8u,
0x3Eu,
OXEAu,
ox02u,
OxEAuU,
Ox2Eu,
ox52u,
ox86u,
ox35u,
ox97u,
ox9Du,
Ox0PAu,

Ox4Au,
OxF2u,
ox32u,
ox3Du,

Ox0Bu,
OxBDu,
oxD8u,
OxEFu,
ox77u,
ox90u,
OxFDu,
OxElu,
Ox5Fu,
oxD8u,
oxCCu,
Ox4Fu,
ox39u,
OxE5u,
oxC7u,
Ox7Fu,
ox73u,
oxCDu,
oxC2u,
0x03u,
OxBAu,
ox76u,
oxDSu,
ox26u,
oOxA6u,
Ox9Fu,
0x08u,
OxAEu,
oxBé6u,
Ox5Eu,
ox30u,
Ox8Au,

ox03u,
OXE9u,
OxDEu,
OxFé6u,

oxC9u,
OxBDu,
Ox5Fu,
ox17u,
Ox4Fu,
ox71u,
Ox5Fu,
9x44u,
Ox4Eu,
ox65u,
OxAlu,
OxCEu,
oxo6u,
ox7Cu,
OxFFu,
OxE6u,
Ox4Fu,
OxF5u,
Ox9Bu,
ox05u,
oxD1u,
0x44u,
ox24u,
ox14u,
Ox11lu,
OxDEu,
ox78u,
oxC4u,
OxACu,
Ox1Au,
OxFAu,
OxB2u,

#if defined(__cplusplus)

Ox5Bu,
ox3Eu,
ox56u,
oxC2u,

OxF6u,
ox68u,
ox75u,
ox33u,
OXxFEu,
oxD3u,
OxB3u,
0x91u,
OxBEu,
0x0eDu,
oxD3u,
OxE4u,
ox40u,
ox26u,
ox1Bu,
OxCEu,
0xBBu,
ox7Du,
ox36u,
oxD3u,
oxB9u,
ox50u,
oxC8u,
ox80u,
ox13u,
Ox1Fu,
0x83u,
OxFAu,
ox6Cu,
ox71u,
Ox4Eu,
OXxE9u,

OxA3u,
ox67u,
0x84u,
0x44u,

OxFFu,
0x89u,
OxA4u,
0x1Bu,
ox02u,
ox86u,
OxElu,
OxElu,
Ox8Fu,
oxocCu,
oxC8u,
OxOEu,
ox41u,
ox90u,
0x48u,
0x19u,
ox38u,
oxD5u,
Ox6Eu,
OxElu,
0xB1lu,
ox42u,
oxDBu,
OxE8u,
Ox5Eu,
OxE4u,
ox63u,
Ox7Fu,
ox5Du,
ox17u,
ox44u,
OxF8u,

ox6Du,
OxF4u,
ox5Cu,
OxFDu,

Ox9Eu,
oxD5u,
OXxE5u,
OxA8u,
ox86u,
OxE3u,
Ox8Au,
ox95u,
ox02u,
0xCBu,
ox23u,
0x1Bu,
oxCCu,
Ox1Fu,
OxA4u,
ox8Cu,
oxceéu,
ox46u,
ox31u,
Ox4Eu,
ox1eou,
ox01u,
ox7Au,
oxCFu,
ox14u,
ox29u,
OxA8u,
OxDEu,
oxDDu,
OxFDu,
ox46u,
Ox5Fu,

OxEEu,
oxDou,
oxBé6u,
OxFAu,

OxE8u,
0x54u,
oxD4u,
ox88u,
ox81u,
0x34u,
OxFFu,
0x05u,
Ox5Fu,
0x48u,
OxF7u,
OxAEu,
ox08u,
Ox1Fu,
0x89u,
ox78u,
OxE6u,
OxB3u,
ox9Du,
Ox2Fu,
0xB5u,
0x41u,
OXEAu,
oxC4u,
oxBou,
ox4é6u,
0xC4u,
ox47u,
0x64u,
oxleéu,
ox30u,
0x33u,

ox36u,
OxA5u,
OxA7u,
oxCou,

Ox5Eu,
ox106u,
oxD1u,
OxABu,
ox15u,
ox24u,
ox33u,
0x9Bu,
OxB8u,
ox14u,
ox73u,
OxFCu,
ox47u,
OxF3u,
OxA8u,
Ox7Fu,
ox39u,
OxF3u,
ox7Du,
OxABu,
OxADu,
0x26u,
ox73u,
Ox6AuU,
ox35u,
OxF1lu,
oxCDu,
OxDEu,
OxEFu,
oxDé6u,
OxF8u,
Ox48u,
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Table 13 shows the memory location for each of the three type of debug access restrictions (SECURE, DEAD, and
NORMAL). SARs and DARs are stored in eFuse, but NARs are stored in SFlash. For eFuse, this is only the read
location; the eFuse write location is in a different memory location and set up as one byte per bit.

Table 13

Location of access restrictions

Access restriction

ACCESS_RESTRICTO
(ADDR)

ACCESS_RESTRICT1
(ADDR)

Storage area

SECURE 0x402C_0829* 0x402C_082A" eFuse

DEAD 0x402C_0827* 0x402C_0828* eFuse

NORMAL 0x1600_1A00 0x1600_1A01 SFlash

Note: For eFuse, this is the read address only. When writing to eFuse, each bit is programmed with a byte
location which is different from the byte read location.

9.1 Debug access settings

The format for all three types of access restrictions (SECURE, DEAD, NORMAL) is the same, although stored in
different locations. The default state of all debug access restrictions is zero, which means that all debug ports
are open for full access.

This section defines the location and definition of each of those parameters. Figure 19 and Figure 20 represent
the format for the 2-byte access restriction structure.

Bit 7 6 5 4 3 2 1 0
Field | MMIO_Allowed [7:6] | SFlash_Allowed [5:4] | SYS_AP_MPU | SYS_AP CM4 CMO
(SYS_AP) (SYS_AP) Enable Disable Disable Disable
Figure 19 ACCESS_RESTRICTO
Bit 7 6 5 ‘ 4 ‘ 3 2 ‘ 1 ‘ 0
Field DIRECT_EXECUTE | SMIF_XIP | SRAM_ALLOWED[5:3] FLASH_ALLOWED[2:0]
(SYS_AP) (SYS_AP) | (SYS_AP) (SYS_AP)
Figure 20 ACCESS_RESTRICT1
Table 14 Access restriction parameters.
Field Value Description

MMIO_Allowed 0x0: All MMIO register
0x1: Only IPC ports 0, 1, and 2

0x2 or 0x3: No MMIO access

Defines what MMIO register are
accessible via the SYS_AP.

IPC ports 0, 1, and 3 are used for
system calls required for
programming of the device.

002-21111 Rev. *F
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Field

Value

Description

SFlash_Allowed

0: Entire SFlash accessible

1: Bottom %2 of SFlash accessible
2: Bottom V4 of SFlash accessible
3: No access allowed to SFlash

This field indicates what portion
of the SFlash main region is
accessible through the SYS_AP.
Only a portion of flash starting at
the bottom of the area is exposed.
Valid only if SYS_DISABLE=0 and
SYS_AP_MPU_ENABLE=1.

SYS_AP_MPU_ENABLE

0x0: SYS_AP MPU disabled
0x1: SYS_AP MPU enabled

SYS_AP_DISABLE must not be
disabled for the MPU to be enabled.

SYS_AP_DISABLE

0x0: SYS_AP not disabled
0x1: SYS_AP disabled

Disables the SYS_AP

CM4_DISABLE

0x0: CM4_AP not disabled
0x1: CM4_AP disabled

Disables the CM4_AP

CMe_DISABLE

0x0: CMO_AP not disabled
0x1: CMO_AP disabled

Disables the CMO_AP

DIRECT_EXE_DISABLE

0x0: Not disabled
0x1: Disable

Disable Direct Execture system call
functionality.

SMIF_XIP_ALLOWED

0x0: Entire Region
0x1: Nothing

This field indicates what portion
of XIP is accessible through the
system access port.

SRAM_ALLOWED

0x0: entire region
0x1:7/8

0x2: 3/4th
0x3:1/2

0x4: 1/4th

0x5: 1/8th

0x6: 1/16th

0x7: nothing

This field indicates what portion
of the SRAM region is accessible
through the SYS_AP. Only a
portion of SRAM starting at the
bottom of the area is exposed.
Valid only if SYS_DISABLE=0 and
SYS_AP_MPU_ENABLE=1.

FLASH_ALLOWED

0x0: entire region
0x1:7/8

0x2: 3/4th
0x3:1/2

Ox4: 1/4th

0x5: 1/8th

0x6: 1/16th

0x7: nothing

This field indicates what portion
of the flash main region is
accessible through the SYS_AP.
Only a portion of flash starting at
the bottom of the area is exposed.
Valid only if SYS_DISABLE=0 and
SYS_AP_MPU_ENABLE=1.

9.2

Firmware control of Debug Port

If any of the three debug access ports (CM0+, CM4, SYS) are disabled in the SECURE life cycle stage, there is no
way to connect to those ports. If any of the debug ports are not disabled in the SECURE life cycle stage, it is
possible for the debug port to be opened either automatically or with firmware. You can disable any
combination of the three access ports, and the ports not disabled may be connected to an external
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programmer/debugger. The 2" generation parts are slightly different than the 15t generation parts as described
in the following sections.

9.2.1 15t generation PSoC™ 6 devices

In the SECURE life cycle stage, if the debug access ports were not disabled, a debugger/programmer cannot
connect to the enabled access port until the GPIOs used for debugging are configured properly. This can be
accomplished within the user’s firmware with the code shown in section 9.2.3.

9.2.2 2"d generation PSoC™ 6 devices

The 2" generation parts have an additional option for configuring the debug ports. A flag in TOC2 Flash boot
options, allow the user to set the default state of the debug ports when in the SECURE life cycle stage. If the
“SWJ pin state” bits are set to 0x10, the GPIOs will be automatically configured to allow connection by a
debugger/programmer hardware without additional user firmware. See the table below for the TOC2 Flash
boot flags for the SWJ pin state.

Table 14 Excerp from TOC2 Flash boot flags
SWJ (debug) pin state [6:5] 0x00 = Do not enable SWJ pins | Determines whether SWJ pins
0x01 = Do not enable SWJ pins | are configured in SWJ mode by
_ . Flash boot.
0x10 = Enable SWJ pins _
0x11 = Do not enable SWJ pins Note: SWJ pins may Pe
enabled later in the
user code.
Application Note 61 002-21111 Rev. *F
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9.2.3 Configure SWJ for Debug

The code snippet below is used to configure the GPIO pins used for debugging and programming of the device.
It will work for all PSoC™ 62/63 devices and allow the debugger/programmer to connect to any debug access
ports not disabled.

static void configure_swj(void)
{

/* Enable CMO+, CM4 and System Access Ports */

CPUSS_AP_CTL = (CY_FB_AP_CTL_CM@_ENABLE_MASK | CY_FB_AP_CTL_CMx_ENABLE_MASK |
CY_FB_AP_CTL_SYS_ENABLE_MASK);

/* Note, PSoC6A-BLE-2 and PSoC6A-2M devices use the same pins and pin configuration
* for SWJ functionality
* P6_4 - SWO/TDO
* P6_5 - SWDOE/TDI
* P6_6 - SWDIO/TMS
* P6_7 - SWCLK/TCLK
*/
Cy GPIO Pin FastInit(P6_4_PORT, P6_4 NUM, CY_GPIO DM_STRONG_IN OFF, O,
P6_4 CPUSS_SWJ_SWO_TDO);
Cy_GPIO_Pin_FastInit(P6_5_PORT, P6_5 NUM, CY_GPIO DM_PULLUP_IN_OFF, o,
P6_5_CPUSS_SWJ_SWDOE_TDI);
Cy_GPIO_Pin_FastInit(P6_6_PORT, P6_6 NUM, CY_GPIO DM_PULLUP_IN OFF, @,
P6_6_CPUSS_SWJ_SWDIO_TMS);
Cy_GPIO Pin_FastInit(P6_7_PORT, P6_7 NUM, CY_GPIO DM_PULLDOWN_IN OFF, O,
P6_7 CPUSS_SWJ_SWCLK_TCLK);
}

9.3 eFuse programming for debug access restrictions and lifecycle stage

A byte of data is required to program each bit of the eFuse. The following pattern is used to program, validate,
or set as ‘don’t care’ each bit of eFuse.

/* EFUSE bit action macros */

#tdefine CY_EFUSE_STATE_SET (oxe1U) /* Tell programmer to set the EFUSE bit */
#define CY_EFUSE_STATE_UNSET (exeou) /* Tell programmer to check that the EFUSE bit is not
set */

t#tdefine CY_EFUSE_STATE_IGNORE (exffU) /* Tell programmer to ignore the EFUSE bit */

The following code snippet is an example of how to set the SARs by programming the eFuse for the 15
generation parts. The full source is available in the mtb-psoc6-example-security/proj_btldr_cmOp/source/
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cy_ps_efuse.c file. Note that this code snippet also sets the device to move to the SECURE lifecycle stage, be
setting the SECURE bit toward the bottom of the structure.

/* EFuse configuration */
CY_SECTION(".cy_efuse") __ USED const cy_stc_efuse_data_t cy_efuseData =

.RESERVED = CY_EFUSE_RESERVED®, /* Reserved bits ignored */

/* Dead access restrictions are set in this section */

/* CM40+ and CM4 debug are disabled, but SYS_AP is left open. */
.DEAD_ACCESS_RESTRICT® =

{
.CMO_DISABLE = CY_EFUSE_STATE_SET, /* Disable CMO+ access port */
.CM4_DISABLE = CY_EFUSE_STATE_SET, /* Disable CM4 access port */
.SYS_DISABLE = CY_EFUSE_STATE_SET, /* Enable System access port */
.SYS_AP_MPU_ENABLE = CY_EFUSE_STATE_UNSET, /* Enable the system access port
MPU */
.SFLASH_ALLOWED = CY_EFUSE_SFLASH_ALLOWED_ENTIRE, /* SYS AP MPU protection of
SFlash */
.MMIO_ALLOWED = CY_EFUSE_MMIO_ALLOWED_ENTIRE, /* SYS AP MPU protection of MMIO
*/
¥
.DEAD_ACCESS_RESTRICT1 =
{
.FLASH_ALLOWED = CY_EFUSE_FLASH_ALLOWED_ENTIRE, /* SYS AP MPU protection of Flash
*/
.SRAM_ALLOWED = CY_EFUSE_SRAM_ALLOWED_ENTIRE, /* SYS AP MPU protection of SRAM
*/
.SMIF_XIP_ALLOWED = CY_EFUSE_SMIF_XIP_ALLOWED ENTIRE, /* SYS AP MPU protection of SMIF
XIP */
.DIRECT_EXECUTE_DISABLE = CY_EFUSE_STATE_UNSET /* Disable "direct execute"
system call */
})

/* Secure access restrictions are set in this section */
/* All debug ports are disabled here. */

.SECURE_ACCESS_RESTRICTO =

{
.CMO_DISABLE = CY_EFUSE_STATE_SET, /* Disable CM@+ access port */
.CM4_DISABLE = CY_EFUSE_STATE_SET, /* Disable CM4 access port */
.SYS_DISABLE = CY_EFUSE_STATE_SET, /* Enable System access port */
.SYS_AP_MPU_ENABLE = CY_EFUSE_STATE_UNSET, /* Enable the system access port
MPU */
.SFLASH_ALLOWED = CY_EFUSE_SFLASH_ALLOWED_ENTIRE, /* SYS AP MPU protection of
SFlash */
.MMIO_ALLOWED = CY_EFUSE_MMIO_ALLOWED_ENTIRE, /* SYS AP MPU protection of MMIO
*/
¥
.SECURE_ACCESS_RESTRICT1 =
{
.FLASH_ALLOWED = CY_EFUSE_FLASH_ALLOWED_ENTIRE, /* SYS AP MPU protection of Flash
*/
Application Note 63 002-21111 Rev. *F

2024-02-27



PSoC™ 6 MCU designing a custom secured system

infineon

9 Appendix C - Debug port access settings

.SRAM_ALLOWED

CY_EFUSE_SRAM_ALLOWED_ENTIRE, /* SYS AP MPU protection of SRAM

*/

.SMIF_XIP_ALLOWED
XIP */

system call */
¥

.LIFE CYCLE_STAGE =

.RESERVED1 = CY_EFUSE_RESERVED1,
.CUSTOMER_DATA =

.DIRECT_EXECUTE_DISABLE = CY_EFUSE_STATE_UNSET

/* This section sets the Life cycle to SECURE
/* You can only set either the “SECURE_WITH_DEBUG” or the “SECURE” bit but not both */

CY_EFUSE_SMIF_XIP_ALLOWED_ENTIRE, /* SYS AP MPU protection of SMIF

/* Disable "direct execute"

{
.NORMAL = CY_EFUSE_STATE_IGNORE, /* Normal life cycle already set - ignore */
.SECURE_WITH_DEBUG = CY_EFUSE_STATE_IGNORE, /* Secure with Debug life cycle - Ignore */
.SECURE = CY_EFUSE_STATE_SET, /* Transition to SECURE */
.RMA = CY_EFUSE_STATE_IGNORE, /* Transition to RMA - Ignore */
.RESERVED = CY_EFUSE_LIFE CYCLE_RESERVED® /* Reserved bits ignored */

¥

/* Reserved bits ignored */

{
CY_EFUSE_CUSTOMER_IGNORE512 /* All user EFUSE data ignored */
}
¥
Table 15 eFuse parameters
Parameter Description

CMO_DISABLE

Disables debug access to CMO+

CM4_DISABLE

Disables debug access to CM4

SYS_DISABLE

Disables debug access to the system access port

SYS_AP_MPU_ENABLE

Enables MPU on the system access port

SFLASH_ALLOWED

Enables access to the SFlash; enabled by default

MMIO_ALLOWED

Enables access to the MMIO registers

FLASH_ALLOWED

Enables access to the flash

SRAM_ALLOWED

Enables access to the SRAM

SMIF_XIP_ALLOWED

Enables execution from the external SMIF memory

DIRECT_EXECUTE_DISABLE

Disables the “direct execute” system call

When you are ready to advance to the SECURE lifecycle stage, the device must be in the NORMAL lifecycle stage.

This is because it is not possible to move from the SECURE_WITH_DEBUG lifecycle stage to the SECURE lifecycle

stage.

1. Change the line “.SECURE = CY_EFUSE_STATE_IGNORE” to “.SECURE = CY_FUSE_STATE_SET” to set the SECURE

bit.

2. Set CY_EFUSE_AVAILABLE to 1 in mtb-example-psoc6-security/proj_btldr_cmOp/source/cy_ps_efuse.h

. #define CY_EFUSE_AVAILABLE 1.

3. Rebuild the project and program the part. Ensure that the device VDDIOO pin must be at 2.5 V.

Application Note

64

002-21111 Rev. *F
2024-02-27



o~ _.
PSoC™ 6 MCU designing a custom secured system |n f| neon

9 Appendix C - Debug port access settings

Important notes:

Infineon provides the CYPRESS™ Programmer application to work with the MiniProg4 Programmer/Debugger
dongle to program and/or debug the PSoC™ 6 devices. 15t and 2"d generation parts have different processes to
move a device to the SECURE stage. Cypress Programmer makes these differences transparent to the user.

During the programming operation of PSoC™ 6 devices, CYPRESS™ Programmer detect when the SECURE eFuse
bit is going to be set.

For both the 15t and 2"d generation parts, steps a, b and c below must occur. For the 15t generation parts,
CYPRESS™ Programmer must perform these steps. The 2"d generation parts have an extra system call
“Transition2Secure” that performs these three steps automatically inside the device.

1. Validate the parts of the SFlash area (trim values and Flash boot) with the internal Factory_HASH to
ensure that the part has not been modified after leaving the factory.

2. Generate secure_HASH based on the TOC2 entries. By default, secure_HASH includes all of SFlash.
Additional areas from the user flash may be included if additional entries are added in TOC2. This
hash is written into the secure_HASH area of the eFuse along with the number of zeros in the hash. This
guarantees that the hash cannot be modified by simply changing zeros to ones.

3. Program the eFuse bits for access restrictions and the SECURE bit. This is done with eFuse programming
system calls; you cannot write directly to eFuse bits.

See the PSoC™ 6 Programming Specifications for more information.
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To transition a device to the RMA stage, you must have access to the following:
+  Thedevice unique ID
«  Private key that is paired with a public key stored and authenticated in SFlash.
Send the following special commands from outside the device via UART, SPI, I2C, etc.:
1. Read the internal unique device ID.
2, Invoke the transition to RMA.
You can implement the special commands in two ways:
1. Include these special commands as part of the existing application.
2. Create a special device code image that supports only the required commands.
+ Thisis a safer and secured way send the special commands. With this approach, when bootloading
this special code image, all proprietary and sensitive data can be erased at the same time. In

addition, a special code image allows an easy implementation of a standard interface such as a
UART to implement the communication needed to invoke the commands.

After this infrastructure is in place, do the following to the transition the device to RMA mode.

1. Erase all sensitive or proprietary code stored in the device. This may be performed with a special
command or with a special code image described above. Erase the flash at least four times to ensure
there is no way to detect any residual code. The public key stored in SFlash must remain because it is
used to transition to the RMA lifecycle stage and to allow Infineon to open the RMA later.

2, Read the device unique ID stored in the devices SFlash. This can be done by invoking the 0x1F (Read
Unique ID) system call, and then sending ID out via the communication interface.

3. Generate a certificate using the unique ID and the customer’s private key that is paired with the public
key stored internally in SFlash. This is the same method that is used to sign code as described in Section
3.5, Code signing and verification, using the same private/public key pairs. The format of the certificate is
shown in Figure 21.

Object size in bytes of the certificate 0x00000114 (4 bytes)
Command ID 0x28000000 (4 bytes)
Unique ID (10 bytes)
Zero Padding 0x0000 (2 bytes)
Digital Signature (256 bytes)

Figure 21 RMA certificate format

4, Send a command to the device that includes the certificate generated. You must implement code to
accept this certificate to invoke the transition to RMA system call (0x28) and pass the certificate as its
parameter. The device Vppjog SUpply must be at 2.5V before performing this step, because the RMA eFuse
is to be programmed. (Any programming of eFuse bits requires the Vppjoo to be 2.5 V.)

5. After the device is reset or power cycled, it will sit idle awaiting a single command from the debug
port to open RMA (system call 0x29) along with the same certificate that was used to invoke the
transition to RMA in the first place. It will have all the same access modes as Virgin mode, but a
debugger/programmer must invoke the open RMA system call every time the device is reset or power
cycled. The device in this state is unusable except for failure analysis.

After you have performed these steps, you can send the device and certificate to Infineon to allow failure
analysis. Note that this special certificate is valid only for the one part for which it was generated.
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11.1 Example Protection unit configuration

This is an example how the SMPUs are configured in the example project for the 1 M flash device.

Internal Flash SRAM
_ 0x1000_0000 — 0x0800_0000
CMO+ CMO+
SMPU_'1 3 BootLoader SMPU-12 BootLoader/Project
(PC=1) (112K) (PC=1,2) (64K)
= 0x1001_C000 = 0x0801_0000
SMPU-7 Protected Memory SMPU-10 Shared SRAM
(PC=2) (16K) (PC=1,24) (32K)
r }ﬁiiil:’iri?niaFyisilci)tiiﬁl 0x1002_0000 = 0x0801_8000
SMPU-11]| | BRI w
(PC=12)| || cMO*Project | ?P“’épff; CM4 Project
i (128K) | (160K)
L_| | 0x1004_0000
| | L 0x0804_0000
|
| CM4 Project i
; (320K) |
[ | CMO+ Bootloader: PC = 0 (During Setup)
} } CMO+ Bootloader: PC = 1 (During Bootloader)
e ! 0x1009_0000 CMO+ Project: PC =2
| Secondary Slot ! CM4 Project: PC =4
sMPU-9| || (448K) l
(PC=14)| || cMo+Project |
; (128K) }
| | 0x100B_0000
i |
} CM4 Project }
} (320K) ‘
| |
i |
L 1/ 0x1010_0000
Figure 22 Protection unit configuration
Table 16 Summary of SMPU settings
Section Bus master | Memory Protection |Start Size Access SMPU
context address attributes
Bootloader |CMO+ Flash PC=1,22 0x1000_000 |0x0001_C00 |R/X 13
0 0 (112K)
CMO+ Project | CMO+ Flash PC=1,2 0x1002_000 |0x0002_000 |R/W/X 11
0 0 (128K)
CM4 Project |CM4 Flash PC=14 0x1004_000 |0x000C_000 | R/W/X 9
0 0 (768K)
Protected CMO+ Flash PC=2 0x1001_C00 |0x0000_400 | R/W/X 7
Flash 0 0 (16K)
(table continues...)
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Table 16 (continued) Summary of SMPU settings
Section Bus master | Memory Protection |Start Size Access SMPU
context address attributes

CMO+ CMO+ SRAM PC=1,2 0x0800_000 |0x0001_000 |R/W/X3 121

Project/ 0 0 (64K)

Bootloader

SRAM

Shared CMO0+/CM4 | SRAM PC=1,2,4 |0x0801_000 |0x0000_800 |R/W 10

SRAM 0 0 (32K)

CM4 Project |CM4 SRAM PC=4 0x0804_000 |0x0002_800 |R/W/X* 5

SRAM 0 0 (160K)

Notes:

1. The bootloader and the CMO+ runtime project uses the same SRAM and SMPU because they will never run at
the same time. The runtime project actually can reuse the bootloader SRAM.

2. The bootloader needs to be PC=1,2 since it has to transition from PC=1 to PC=2 when the boot loader jumps
to the CMO+ project.

3. The CM0+ SRAM must be executable since when programming Flash, it must run in SRAM in case the code
execution is in the same flash block as the one being updated.

4. The CM4 SRAM must be executable since when programming Flash, it must run in SRAM in case the code

execution is in the same flash block as the one being updated.

To maximize security, ensure the following order for programming the protection units. By default, both CM0+

and CM4 are set to PC=0.

1. Make all protection unit configuration changes while CM0+ is still in PC=0 mode.

2, After configuring the protection units, change CM0+ PC value to a non-zero value.

3. Set the protection context (PC) mask values for CMO+ and CM4. The mask values determine the PC values
that each of these bus masters can switch to. Note that the mask value does not set the current PC value.

4, Set the CM4 protection context to a non-zero value. In this example, it is set to PC=4.

5. Configure the SMPU slave protection unit structures and enable them. Create a structure for
each SMPU. Use the Cy_prot_ConfigSmpuslaveStruct() function to configure the SMPU, and the
Cy_Prot_EnableSmpuSlaveStruct() function to enable it.

6. Configure the master protection unit structures with the cy_prot_configSmpuMasterstruct() function for
all SMPUs. Enable the master structs with the cy_Prot_EnableSmpuMasterstruct() function.

7. Program the protection units slave structures to be owned by PC=0.

Protect the Ms_cTL registers so that the bus master PC masks cannot be altered.

9. Use PPUs to secure the bus master registers (both master and slave), and enable them.
10. Change the protection context for CMO+ to a non-zero value; in this example PC=1.

®

Note: See the proj_btldr_cmp0/cy_ps_prot_units.c file in CE234992 for an example of code that configures
the protection units.
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11.2 Pre-configured protection units

Some protection units are configured during the boot process and must not be reconfigured. These protection
units are vital to providing a secure system and providing a reliable access to system call functions.

It is important to note that if the protection context of any bus master, especially CM0+ and CM4, is left at 0
(PC=0), that bus master will have full access to all memory and registers no matter how the protection units are
configured.

To achieve the best security, do not run any bus master at PC=0 after the configuration process is complete.
This should be done before CM4 is enabled by CM0+ and right after all protection-associated registers are
configured.

Table 17 lists the protection units that must not be reconfigured by the user. These settings make sure that any
modifications to eFuse or flash must go through system calls to provide proper security.

Table 17 Protection units used by the system

Protection unit Usage description

SMPU 15 Read/write restriction for ROM private stack

SMPU 14 Read/write restriction for ROM region

PROG PPU 15 Write restriction for cPuss AP_CTL, PROTECTION, CM@_NMI_CTL,DP_CTL and MBIST_CTL
registers

PROG PPU 14 Read/write restriction for CPUSS WOUNDING and CMe_PC@_HANDLER registers

PROG PPU 13 Write restriction for FlashC FM_CTL.BOOKMARK register

PROG PPU 12 Read/write restriction for eFuse region (excluding CUSTOMER_DATA)

PROG PPU 11 Write restriction for IPC 0, 1 and 2 during system calls

PROG PPU 10 Read/write restriction for Crypto during system calls that use crypto operations

PROG PPU 9 Read/write restriction for FM_cTL registers
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If the user application flash or the TOC2 was determined to be invalid, an error code will be written to IPC.DATA
(structure 2). This allows you to detect the cause of failure during debug. Table 18 lists all possible values.

Table 18

Error codes and values during debug

Error name

Value

Description

CY_FB_STATUS_SUCCESS

0xA100_0100

Success status value

CY_FB_STATUS_BUSY_WAIT_LOOP

0xA100_0101

Debugger probe acquired the device in Test
mode. Flash boot has entered a busy wait loop.

CY_FB_ERROR_INVALID_APP_SIGN

0xF100_0100

Application signature validation failed for the
device families where Flash boot launches only
one application from TOC2.

Either application structure or a digital signature
is invalid for the device families for which Flash
boot may launch either of two application in
TOC2.

CY_FB_ERROR_INVALID_TOC

0xF100_0101

Empty orinvalid TOC

CY_FB_ERROR_INVALID_KEY

0xF100_0102

Invalid public key

CY_FB_ERROR_UNREACHABLE

0xF100_0103

Unreachable code

CY_FB_ERROR_TOC_DATA_CLOCK

0xF100_0104

TOC contains an invalid CM0+ clock attribute

CY_FB_ERROR_TOC_DATA_DELAY

0xF100_0105

TOC contains an invalid listen window delay

CY_FB_ERROR_FLL_CONFIG

0xF100_0106

FLL configuration failed

CY_FB_ERROR_INVALID_APP@_DATA

0xF100_0107

Application structure is invalid for the device
families where Flash boot may launch only one
app from TOC2.

CY_FB_ERROR_CRYPTO

0xF100_0108

Errorin crypto operation

CY_FB_ERROR_INVALID_ PARAM

0xF100_0109

Invalid parameter value

CY_FB_ERROR_BOOT_HARD_FAULT

0xF100_010a

A hard fault exception occurred in Flash boot

CY_FB_ERROR_UNEXPECTED_INTERRUPT

0xF100_010B

An unexpected interrupt occurred in Flash boot

CY_FB_ERROR_BOOTLOADER

0xF100_0140

A bootloader error occurred

CY_FB_ERROR_BOOT_LIN_INIT

0xF100_0141

Bootloader error: LIN initialization failed

CY_FB_ERROR_BOOT_LIN_SET_CMD

0xF100_0142

Bootloader error: LinSetCmd() failed
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Table 19 Reference documents

infineon

Code examples

CE234992 PSoC™ 6 MCU: Security Application Template

Application notes

AN221774 Getting started with PSoC™ 6 MCU

AN210781 Getting started with PSoC™ 6 MCU with Bluetooth” Low Energy connectivity
AN218241 PSoC™ 6 MCU hardware design considerations

AN213924 PSoC™ 6 MCU bootloader software development kit (SDK) guide

Device and support documentation

PSoC™ 6 MCU datasheets

PSoC™ 6 MCU technical reference manuals

PSoC™ 6 MCU programming specification

CyMCUElfTool user guide

Development kit (DVK) documentation

CY8CKIT-062-BLE, PSoC™ 6 Bluetooth’ LE pioneer kit

CY8CKIT-062-WIFI-BT, PSoC™ 6 Wi-Fi-Bluetooth” pioneer kit

CYS8CPROTO-062-4343W, PSoC™ 6 Wi-Fi Bluetooth” prototyping kit

CY8CPROTO-063-BLE, PSoC™ 6 Bluetooth® LE prototyping kit
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